We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Flexible Surgical Needle for Use in Image-Guided Procedure Offers Enhanced Precision

By HospiMedica International staff writers
Posted on 24 Oct 2022
Print article
Image: An innovative surgical needle offers greater precision in surgeon’s movements (Photo courtesy of EPFL)
Image: An innovative surgical needle offers greater precision in surgeon’s movements (Photo courtesy of EPFL)

A growing number of surgical procedures are being performed with minimally invasive techniques. Surgeons make an incision just a few centimeters long and then use long, thin instruments and needles to reach the target tissue, with their movements guided by imaging technology. However, even the most careful surgeons often have to adjust the needle’s trajectory as they go along, pulling it out and repositioning it. In some cases, the tissue can be extremely hard to reach because it’s tucked away behind an organ, for example. Such probing with a stiff needle can make surgeries last longer and increase the risk of trauma or infection. Now, researchers have developed a new kind of flexible needle (ARC) that addresses this problem. A button on the needle’s handle allows surgeons to correct the needle’s trajectory on the fly, enabling them to reach diseased tissue more quickly and, if needed, explore nearby tissue without pulling the needle out.

The innovative surgical needle developed by engineers from EPFL (Lausanne, Switzerland and the University of Strasbourg (Strasbourg, France) is intended for use in image-guided surgery, and offers greater precision in surgeon’s movements as well as reduces the risk for patients. The needle has the stiffness to make it easier for surgeons to move the instrument exactly as they want along with a tip that surgeons can curve as needed. The entire system is mechanical. When a surgeon slides the button, the inner tube translates and releases one, two or three tiny segments that move in the direction indicated by the bevel of the needle and therefore by the orientation of the surgeon's hand. For now, only the first few centimeters of the tip are flexible, but the system could be modified to extend that.

Using a high-precision process, the engineers were able to make customized needles with diameters of 0.9-4.5 mm so as to cover a wide range of surgical applications. The researchers tested two different types of materials: stainless steel and glass. The stainless steel version is the most advanced because "glass technology is emerging and still requires development. Nevertheless needles are intended for soft-tissue surgery, meaning they won’t have to withstand shocks,” according to the researchers. The flexible needles are almost ready for preclinical trials, and the engineers are actively seeking companies to partner with. The researchers plan to eventually connect high-precision systems to their device in order to give doctors smarter medical equipment.

“We performed resistance tests in silicone which showed that the kind of glass we selected offers numerous benefits: it’s biocompatible, hard to deform, can be used with MRI machines, and doesn’t create reflections that could interfere with images of the area being operated on,” said Charles Baur, an engineer at EPFL’s Instant-Lab (School of Engineering). "It is possible to add additional functions to ensure specific surgical procedures such as electrostimulation, administration of medication on demand or biopsies, to name a few."

Related Links:
EPFL
University of Strasbourg

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Anterior Cervical Plate System
XTEND
New
Mattress Replacement System
Carilex DualPlus

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.