We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Printed Functional Human Islets Could Transform Type 1 Diabetes Treatment

By HospiMedica International staff writers
Posted on 02 Jul 2025

Type 1 diabetes (T1D) is a chronic condition in which the body’s immune system destroys insulin-producing cells in the pancreas, requiring patients to rely on regular insulin injections to manage blood sugar. More...

While islet transplants have shown potential as a treatment, traditional methods involve infusing the islets into the liver, often resulting in significant cell loss and limited long-term success. This approach is invasive and can be uncomfortable for patients. Moreover, ensuring the long-term viability and function of transplanted islets remains a major hurdle. A new technology presented at the ESOT Congress 2025 addresses these limitations by creating stable, functional islet structures that can be implanted through a minimally invasive procedure.

An international team of researchers, led by Wake Forest University School of Medicine (Winston-Salem, NC, USA), developed a novel bioprinting approach using a customized bioink to 3D print functional human islets. The bioink was made from a combination of alginate and decellularized human pancreatic tissue, designed to replicate the natural environment of the pancreas. This enabled the creation of high-density, durable islet structures capable of surviving and functioning outside the body. The researchers fine-tuned their 3D printing method by using low pressure (30 kPa) and a slow print speed (20 mm/min) to reduce physical stress and maintain the shape of the delicate islets. The printed structures featured a porous design to support oxygen and nutrient flow, promote vascularization, and enhance the long-term survival of the cells. Unlike traditional methods, these islets were designed to be implanted just under the skin through a simple incision and local anesthesia, offering a safer, less invasive alternative.

In laboratory tests, the bioprinted islets maintained over 90% cell viability and exhibited strong, glucose-responsive insulin release for up to three weeks. By day 21, the constructs continued to respond effectively to changes in blood sugar, suggesting they may remain functional after implantation. The structures also retained their shape without clumping or degradation, addressing a major limitation of earlier bioprinting methods. As noted in the study, this is one of the first demonstrations using real human islets instead of animal cells, marking a milestone in bioprinting for diabetes treatment. The team is now testing the constructs in animal models and exploring cryopreservation to improve shelf life and availability. They are also working on adapting the method to use alternative sources of insulin-producing cells, such as stem-cell-derived islets and xeno-islets from pigs, to address donor shortages and scale the therapy for widespread use.

“This is one of the first studies to use real human islets instead of animal cells in bioprinting, and the results are incredibly promising,” said lead author Dr. Quentin Perrier. “It means we’re getting closer to creating an off-the-shelf treatment for diabetes that could one day eliminate the need for insulin injections.”

Related Links:
Wake Forest University School of Medicine


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Hospital Data Analytics App
Alarm History Analytics
New
MR Trolley
MR9002
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: For the first time, a fluorescent-guided nerve imaging agent has shown promise for use in humans (Photo courtesy of VUMC)

Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery

Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.