We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Bioresorbable Implantable Device Could Treat Pain After Surgery

By HospiMedica International staff writers
Posted on 13 Sep 2022

Researchers have developed a soft, bioresorbable, implantable device with the potential to cool peripheral nerves in a minimally invasive, focused manner that could be used to treat pain after surgery. More...

To develop the device, a team of researchers from Pusan National University (Busan, South Korea) designed a microfluidics system formed with a bioresorbable material - poly(octanediol citrate) - with interconnects carrying a liquid coolant to a serpentine chamber. To top it off, a Magnesium temperature sensor for real-time temperature monitoring was incorporated at its distal end. The intensity and localization of the cooling effect was regulated by perfluoro pentane (PFP) and dry nitrogen gas (N2) - the two components of the liquid coolant, as well as the geometry of the serpentine chamber.

Next, the team tested the device by implanting it into the sciatic nerves of living rat models with neuropathic pain associated with spared nerve injury. After a three-week evaluation, the team found that the device successfully delivered cooling power to the peripheral nerves of the rats, which led to a reduction in their pain. Fortunately, the delivery of the cooling power occurred in a minimally invasive, stable, and precise manner. Moreover, this application was localized and reversible, and remained effective for almost 15 minutes during one session. On being submerged in phosphate-buffered saline solution at 75°C, the device, which was made of bioresorbable materials, dissolved within 20 days and was eliminated in approximately 50 days. These findings imply that it has the potential to naturally degrade and get resorbed in the human body.

“The developed device can be used to treat pain after surgery,” said Professor Min-Ho Seo from Pusan National University who led the team of researchers and believes the device could have important future applications. “Since it is connected to an external source of fluid and power like a commercial intravenous (IV) device, it can easily be controlled by the patient. This way, our implantable device will be able to provide targeted and individualized relief without the drawbacks of the addictive pain medications.”

Related Links:
Pusan National University


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Pediatric Cast Saw
CSP-201 Quietcast
New
Captivator EMR Device
Captivator Endoscopic Mucosal Resection Device
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.