We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

AI Image Analysis Module Detects Cancers at the Time of Surgery

By HospiMedica International staff writers
Posted on 26 May 2022
Print article
Image: NIO Laser Imaging System (Photo courtesy of Invenio Imaging)
Image: NIO Laser Imaging System (Photo courtesy of Invenio Imaging)

A new image analysis module based on deep learning allows neurosurgeons to identify areas of cancer infiltration in patients undergoing primary treatment of a diffuse glioma, providing cancer detection where they really need it and dramatically improving brain tumor surgery.

Invenio Imaging Inc.’s (Santa Clara, CA, USA) NIO Laser Imaging System uses Stimulated Raman Histology to image unprocessed tissue specimen without sectioning or staining, enabling histologic evaluation outside the laboratory. It has been used in over 2000 brain tumor procedures across multiple institutions in the US and in Europe. SRH allows three-dimensional imaging of thick specimens using optical sectioning and relies on laser spectroscopy to interrogate the chemical composition of the sample. As such, it does not require physical sectioning, (e.g. with a microtome on frozen or paraffin-embedded tissue) or dye staining, and it allows optical imaging of fresh tissue specimens with minimal tissue preparation.

In contrast to other laser spectroscopy techniques, SRH is unique in that it performs a spectroscopic measurement at each pixel and displays the results as a pseudo-color image, instead of a point spectrum. The NIO Laser Imaging System uses a high numerical aperture objective with 25x magnification and a 0.5mm scan width. Larger areas up to 10mm x 10mm can then be acquired by stitching multiple fields of view in a fully automated process. NIO images are natively digital and can be shared with existing IT infrastructure via a vendor-neutral DICOM interface. The NIO Glioma Reveal image analysis module now adds immediate decision support to the NIO Laser Imaging System by allowing the imaging of multiple samples from the resection cavity. Invenio has received the CE Mark for the NIO Glioma Reveal image analysis module, allowing neurosurgeons in the EU to use it to inform intraoperative decisions.

"By streamlining intraoperative tissue imaging, the NIO Laser Imaging System allows the imaging of multiple samples from the resection cavity. The NIO Glioma Reveal image analysis module now adds immediate decision support", said Chris Freudiger, PhD, co-founder and CTO of Invenio Imaging.

"Glioma Reveal provides cancer detection where we really need it, dramatically improving brain tumor surgery," added Prof. Dr. Jürgen Beck, Chair of Neurosurgery at the University of Freiburg.

"Applying reliable artificial intelligence to digital pathology appears to me, as a surgeon, to be the missing piece in the puzzle of rapid intraoperative histology-based decision-making," said Asst. Prof. Dr. Volker Neuschmelting, Vice-Chair of Neurosurgery at the University of Cologne.

"The NIO Laser Imaging System can also be combined with other important imaging techniques such as 5-ALA fluorescence to further improve brain tumor detection during surgery," explained Prof. Dr. Georg Widhalm, neurosurgeon at the University of Vienna.

Related Links:
Invenio Imaging Inc.

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer
New
Standing Sling
Sara Flex

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.