We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Single-Actuator System Allows Sensor-Free Precision Control of Miniature Surgical Instruments

By HospiMedica International staff writers
Posted on 24 May 2022
Print article
Image: Novel miniature microelectromechanical devices could find medical applications (Photo courtesy of KAUST)
Image: Novel miniature microelectromechanical devices could find medical applications (Photo courtesy of KAUST)

Positioning miniature microelectromechanical devices in medical applications traditionally relies on a combination of actuators that cause movement and sensors that detect position. Now, the ability to precisely control the position and movement of miniature devices is being taken into new territory with scientists developing tinier and simpler devices without a single sensor. The prototype devices also use a single actuator rather than the several usually required. Having a single actuator enabled the researchers to reduce the size of their devices and also reduce the complexity of the electronics and power supply.

The devices developed by scientists at King Abdullah University of Science and Technology (KAUST; Thuwal, Saudi Arabia) are fabricated from a wafer of silicon on an insulator, with final dimensions of 2 by 2.5 millimeters width and just 0.4 millimeters thick. The simplicity of the design in being constructed from a single wafer of material is another significant innovation: alternative devices generally require several distinct parts. The scientists developed and tested several versions of their devices and were pleased with the promising results.

They demonstrated that applying a suitable voltage can switch the mobile section through a series of fixed positions a mere 10 micrometers apart. This would carry whatever component was being positioned in a real-world application. A row of serrated catches and grippers on either side of the moving part holds it in stable positions without the need for any sensors. Changing the voltage can return the system to its original configuration.

The scientists believe that the performance demonstrated by their prototypes could one day be used to precisely control miniature surgical instruments, allowing extremely fine techniques not currently possible. Or it might be used to deliver drugs at very precise locations and times. They hope it might also find applications in many areas of industry where miniaturization and microdevices are taking technology to ever lower scales.

“The devices can be implemented in very narrow spaces without adding the congestion that might be involved using alternative methods,” said Hossein Fariborzi, professor of electrical engineering. “Because of the simple design and control, we can remove direct electrical connections and enable remote activation and thereby greatly increase the flexibility of this microsystem for use in various applications.”

“Our novel approach gets rid of sensors,” explained postdoc Hussein Hussein. “The basic design could be easily adjusted to fit any application and put it into practice.”

Related Links:
KAUST 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Color Doppler Ultrasound System
KC20

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.