We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Novel Coating Might Curb Organ Transplant Rejection

By HospiMedica International staff writers
Posted on 31 Aug 2021
Using immunosuppressive polymers to coat blood vessels of organs for transplant can substantially diminish rejection, according to a new study.

Developed at the University of British Columbia (UBC; Vancouver, Canada), Simon Fraser University (Burnaby, Canada), and other institutions, the new synthetic polymer is designed to mimic glycocalyx, an immune-modulating protein that lines blood vessels, which tends to break down during organ procurement as a result of enzymatic ligation of the glycopolymers used during cold ischemic storage. More...
In addition, this ligation subsequently attenuates the acute and chronic rejection of the grafts after transplantation.

For the study, conducted in syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury and immune-cell adhesion. A mouse artery coated with the polymer and then transplanted exhibited strong long-term resistance to inflammation and rejection. According to the researchers, the polymer-mediated shielding of endothelial glycocalyx could also reduce the damage and rejection of transplanted organs after surgery. The study was published on August 9, 2021, in Nature Biomedical Engineering.

“We demonstrated that the technology works for blood vessel and complex kidney transplantation in mice. However, the immune system of these animals is slightly different than in humans,” said senior author Jayachandran Kizhakkedathu, PhD, who developed the polymer at the UBC Centre for Blood Research. “Our next step is to investigate the protective effect of the technology in large animal transplantation, including non-human primates. We’re hopeful that this breakthrough will one day improve quality of life for transplant patients and improve the lifespan of transplanted organs.”

The cornerstone of traditional organ preservation is cold ischemic storage. Although this method is intended to reduce the extent of organ damage during transport, significant deterioration of the donated organ still occurs; the longer the organ is kept on ice, the greater the damage.

Related Links:
University of British Columbia
Simon Fraser University



Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Needle Guide Disposable Kit
Verza
New
Critical Care Cart
Avalo
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.