We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Micro-Engineered Membrane Reduces Pacemaker Tissue Fibrosis

By HospiMedica International staff writers
Posted on 02 Dec 2019
A protective membrane made of biosynthesized cellulose (BC) significantly reduces the build-up of fibrotic tissue around implanted cardiac pacemakers, according to a new study.

Developed at the Swiss Federal Institute of Technology (ETH; Zurich, Switzerland), the German Centre for Cardiovascular Research (DZHK; Berlin, Germany), Charité University Medicine (Charité; Berlin, Germany), and other institutions, the micro-engineered non-resorbable BC membrane was created by transferring surface microscale geometries via a lithographic protocol harnessing the fermentation process. More...
Symmetric arrays of hexagonal pits in the micron range were generated onto the BC surface in order to interfere with the adhesion of cells involved in foreign body reaction, including fibroblasts and macrophages.

The researchers tested the membrane on 16 pigs; two pacemakers were implanted in each, of which one was enveloped in the cellulose membrane; the pacemakers were explanted at three and 12 months. Analysis showed that the BC protective layers were undamaged, with no sign of chemical or mechanical degradation. They appeared as a thin white-tan layer adherent to the surrounding thin fibrous capsule, from which it could be peeled off by gently pulling with forceps. An average reduction of 66% in fibrotic tissue thickness around the pacemaker was shown, and both the generator and the proximal parts of the leads were completely free of fibrotic tissue. The study was published on October 31, 2109, in Biomaterials.

“When fibrotic tissue forms, the first stage is the deposition of proteins on the surface; a fibrous membrane surface impedes this process. Another factor is that the membrane has honeycomb-like indentations in the surface, each measuring 10 micrometres in diameter,” said lead author Francesco Robotti, PhD, of ETH. “These indentations make it difficult for the cells that form fibrotic tissue to adhere to the surface, creating the conditions for simplified implantable electronic device revision surgeries.”

“Every pacemaker has to be replaced at some point. When this time comes, typically after about five years when the device's battery expires, the patient has to undergo surgery,” said co-senior author Aldo Ferrari, PhD, of ETH and Empa. “If too much fibrotic tissue has formed around the pacemaker, it complicates the procedure. In such cases, the surgeon has to cut into and remove this excess tissue. Not only does that prolong the operation, it also increases the risk of complications such as infection.”

Upon cardiac implantable electronic device (CIED) exchange, upgrade, or revision surgery, patients are exposed to a considerable risk of adverse events. The presence of firm fibrotic tissue endangers these procedures. Leads can be damaged in the attempt of freeing them from fibrotic tissue, and hematoma can form as result of capsulectomy, pocket debridement, and leads dissection. Due to the increasing number of CIED exchange, upgrade, and revision surgeries, the incidence of related complications is expected to rise in the near future.

Related Links:
Swiss Federal Institute of Technology
German Centre for Cardiovascular Research
Charité University Medicine



Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Powered Surgical Stapler
ECHELON 3000 Stapler
New
Multifunctional Patient Floor Lift
Maxi Move 5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.