We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




3D-Printed Interbody Implants Facilitate Bone Fusion

By HospiMedica International staff writers
Posted on 07 Oct 2019
An innovative portfolio of three-dimensional (3D) printed titanium interbody implants are designed to treat degenerative spine disease by expediting fusion surgery.

The DePuy Synthes (West Chester, PA, USA) CONDUIT Interbody Platform with EIT Cellular Titanium Technology provides the fabricated structures with a porosity of 80%, which closely mimics the structure and modulus of elasticity of natural human cancellous bone. More...
The differentiated cell design and structure of the interbody cage also allows clear visualization of the space in and around the implant both intra- and post-operatively on X-ray, computerized tomography (CT) scans, and magnetic resonance imaging (MRI), without significant interference.

During the spinal fusion procedure, the degenerated, collapsed disc is removed and replaced with a CONDUIT interbody spacer, along with a bone graft, with the intention of restoring natural height and alignment between two adjacent vertebrae. The interbody implant is also prepared with roughened nanoscale surface features that to lead to increased adhesion of osteoblasts, compared to conventional titanium materials. The end result is that the formerly mobile disc space between the two vertebrae fuses into as a single, solid bone.

“Our goal as a spine business is to focus on the areas with the most potential to solve unmet clinical needs, and we are excited to add advanced materials to our interbody portfolio as another option for surgeons,” said Nadav Tomer, worldwide president of spine at DePuy Synthes. “The launch of the CONDUIT portfolio, together with our comprehensive interbody implant offerings for degenerative disc disease, helps us deliver life-enhancing spine solutions that advance the standard of care for patients everywhere.”

Interbody devices are designed to replace the intervertebral disc of the spine, enhancing stability in the region while the spine fuses. Over time, the packed bone graft material is gradually replaced by natural bone. Fusion procedures typically use a posterior fixation device to the associated level, since the surgeons will implant interbody devices from an anterior approach and flip the patient over to implant a posterior pedicle screw device. This combination increases fusion success.

Related Links:
DePuy Synthes


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Warming Cabinet
EC1850BL
New
Pressure Transducer
TruWave
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.