We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

3D Scaffolds Improve Nipple Reconstruction Techniques

By HospiMedica International staff writers
Posted on 20 May 2019
Print article
Image: Researchers assert that a 3D-printed scaffold may act as a framework and allow cancer patients to grow breast tissue (Photo courtesy of All3DP).
Image: Researchers assert that a 3D-printed scaffold may act as a framework and allow cancer patients to grow breast tissue (Photo courtesy of All3DP).
A combination of three-dimensional (3D) printed biomaterial scaffolds and autologous cell seeding are the future of breast reconstruction, according to a new study.

Researchers at Queensland University of Technology (QUT; Australia), the University of Queensland (UQ; Brisbane, Australia), and Royal Brisbane and Women's Hospital (RBWH; Australia) conducted a literature review to study the evolution of nipple reconstruction techniques and current tissue engineering and regenerative medicine (TERM) protocols, from the more established local skin flap surgical methods to modern tissue engineering approaches.

They then explored different tissue engineering concepts and how clinical outcomes could be improved for patients undergoing nipple–areola complex (NAC) reconstruction, especially cosmetic success, which is evaluated by position, shape, texture, pigmentation, and projection. They found that despite a myriad of flap and augmented-flap techniques reported in the literature, no gold standard has emerged, and to date, no one technique provides a consistently reliable method of nipple reconstruction.

They therefore propose a novel technique, whereby a 3D printed tissue-engineered construct (TEC) is used as an autologous graft to augment conventional nipple reconstruction, due to the ability of TECs to stimulate vascularization and stem cell proliferation and differentiation. According to the authors, an important consideration in animal trials will be the selection of an implant site that appropriately mimics the tension and thickness of the overlying skin following breast reconstruction. The study was published on April 16, 2019, in Tissue Engineering.

“Historically, local skin flaps were utilized for nipple reconstruction, with more recent techniques exploring the addition of implanted material. Conventional TERM techniques involve seeding a scaffold with the patients' own cells and using growth factors to promote survival,” said senior author Dietmar Hutmacher, PhD, of QUT. “Tissue engineering and regenerative medicine represents a potential source of stable and biocompatible implantable tissue, which may have a positive effect on cosmetic outcomes.”

NAC reconstruction may be necessitated by developmental absence, trauma, burn injury, or most commonly, breast cancer requiring mastectomy. The nipple is often viewed as the finishing touch of the entire process, holding considerable symbolic significance for patients that extend beyond the physical realm; patients have reported an improved perception of breast symmetry, softness, and sensitivity, compared with patients who underwent a breast-only reconstruction.

Related Links:
Queensland University of Technology
University of Queensland
Royal Brisbane and Women's Hospital

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Fetal and Maternal Monitor
F9 Series
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.