We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




3D Scaffolds Improve Nipple Reconstruction Techniques

By HospiMedica International staff writers
Posted on 20 May 2019
A combination of three-dimensional (3D) printed biomaterial scaffolds and autologous cell seeding are the future of breast reconstruction, according to a new study.

Researchers at Queensland University of Technology (QUT; Australia), the University of Queensland (UQ; Brisbane, Australia), and Royal Brisbane and Women's Hospital (RBWH; Australia) conducted a literature review to study the evolution of nipple reconstruction techniques and current tissue engineering and regenerative medicine (TERM) protocols, from the more established local skin flap surgical methods to modern tissue engineering approaches.

They then explored different tissue engineering concepts and how clinical outcomes could be improved for patients undergoing nipple–areola complex (NAC) reconstruction, especially cosmetic success, which is evaluated by position, shape, texture, pigmentation, and projection. More...
They found that despite a myriad of flap and augmented-flap techniques reported in the literature, no gold standard has emerged, and to date, no one technique provides a consistently reliable method of nipple reconstruction.

They therefore propose a novel technique, whereby a 3D printed tissue-engineered construct (TEC) is used as an autologous graft to augment conventional nipple reconstruction, due to the ability of TECs to stimulate vascularization and stem cell proliferation and differentiation. According to the authors, an important consideration in animal trials will be the selection of an implant site that appropriately mimics the tension and thickness of the overlying skin following breast reconstruction. The study was published on April 16, 2019, in Tissue Engineering.

“Historically, local skin flaps were utilized for nipple reconstruction, with more recent techniques exploring the addition of implanted material. Conventional TERM techniques involve seeding a scaffold with the patients' own cells and using growth factors to promote survival,” said senior author Dietmar Hutmacher, PhD, of QUT. “Tissue engineering and regenerative medicine represents a potential source of stable and biocompatible implantable tissue, which may have a positive effect on cosmetic outcomes.”

NAC reconstruction may be necessitated by developmental absence, trauma, burn injury, or most commonly, breast cancer requiring mastectomy. The nipple is often viewed as the finishing touch of the entire process, holding considerable symbolic significance for patients that extend beyond the physical realm; patients have reported an improved perception of breast symmetry, softness, and sensitivity, compared with patients who underwent a breast-only reconstruction.

Related Links:
Queensland University of Technology
University of Queensland
Royal Brisbane and Women's Hospital


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Warming Cabinet
EC1850BL
New
Anesthesia Cart
UTGSU-333369-DKB
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.