We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Special Glasses Help Surgeons Visualize Cancer

By HospiMedica International staff writers
Posted on 27 Feb 2014
Print article
Image: Breast surgeon Julie Margenthaler, MD, visualizing cancer cells (Photo courtesy of WUSTL - Washington University in St. Louis).
Image: Breast surgeon Julie Margenthaler, MD, visualizing cancer cells (Photo courtesy of WUSTL - Washington University in St. Louis).
High-tech glasses may help surgeons distinguish cancer cells from healthy cells by making them glow blue when viewed through the eyewear.

Developed by researchers at Washington University (St. Louis, MO, USA), the technology, called optical projection of acquired luminescence (OPAL), incorporates custom video technology, a head-mounted display, and a targeted molecular contrast agent that attaches to cancer cells, making them glow blue when irradiated with a special light. The resulting fluorescence intensity maps are projected onto the imaged surface and viewed through the glasses, rather than via wall-mounted display monitors.

To demonstrate the proof-of-principle for OPAL applications in oncologic surgery, lymphatic transport of indocyanine green was visualized in live mice for real-time identification of sentinel lymph nodes. Subsequently, peritoneal tumors in a murine model of breast cancer metastasis were identified using OPAL following systemic administration of a tumor-selective fluorescent molecular probe. The researchers noted that tumors as small as one mm in diameter could be detected. The study was published in the December 2013 issue of the Journal of Biomedical Optics.

“These initial results clearly show that OPAL can enhance adoption and ease-of-use of fluorescence imaging in oncologic procedures relative to existing state-of-the-art intraoperative imaging systems,” said lead author professor of radiology and biomedical engineering Samuel Achilefu, PhD. “This technology has great potential for patients and health-care professionals. Our goal is to make sure no cancer is left behind.”

“We’re in the early stages of this technology, and more development and testing will be done, but we’re certainly encouraged by the potential benefits to patients,” said associate professor of surgery Julie Margenthaler, MD, who performed the first in-human operation using the system at the WUSTL Barnes-Jewish Hospital (St. Louis, MO, USA) on February 10, 2014. “Imagine what it would mean if these glasses eliminated the need for follow-up surgery and the associated pain, inconvenience, and anxiety.”

Related Links:

Washington University
Barnes-Jewish Hospital


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Parenteral Nutrition Solution
Olimel Portfolio
New
Portable Patient Lift
Maxi Move

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.