Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Remote-Controlled Micro-Robots Advance Medical Procedures

By HospiMedica International staff writers
Posted on 17 Aug 2016
Miniature robots that enter the human body could eventually replace invasive, often complicated surgery, optimizing the treatment of a variety of diseases.

Under development at Ecole Polytechnique Fédérale de Lausanne (EPFL; Switzerland) and ETH Zurich (Switzerland), the biologically inspired microrobots were designed to mimic the parasitic protozoan trypanosomes, which causes African trypanosomiasis, also known as sleeping sickness. Trypanosomes uses a flagellum for propulsion, but hides it away once inside a person’s bloodstream as a survival mechanism. The prototype microrobot robot also has a bacterium-like flagellum that enables it to swim.

Unlike conventional robots, the microrobots are soft, flexible, and motor-less, made of a biocompatible hydrogel and magnetic nanoparticles. They are controlled via an integrated manipulation platform that can remotely control their mobility with electromagnetic fields, and can cause them to shape-shift when heat is applied, unfolding to their pre-determined shape. Once the final shape is achieved, the magnetic nanoparticles make them move and swim when an electromagnetic field is applied. The microrobots can then complete their mission, delivering drugs or performing precision tasks such as clearing clogged-up arteries.

Once the mission is completed, they can be heated with a laser, resulting in the flagellum wrapping around the body. To build a microrobot, the nanoparticles are placed inside layers of a biocompatible hydrogel. An electromagnetic field is then applied to orientate the nanoparticles in different parts of the construct, followed by a polymerization step to solidify the hydrogel. It is then placed in water, folding in specific ways depending on the orientation of the nanoparticles inside the gel to form the final overall 3D form. The study was published on July 22, 2016, in Nature Communications.

“Both a bacterium’s body and its flagellum play an important role in its movement. Our new production method lets us test an array of shapes and combinations to obtain the best motion capability for a given task,” said study co-author Mahmut Selman Sakar, PhD, of EPFL. “Our research also provides valuable insight into how bacteria move inside the human body and adapt to changes in their microenvironment.”

Related Links:
Ecole Polytechnique Fédérale de Lausanne
ETH Zurich

Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
New
Auditory Evoked Potential Device
Bio-logic NavPRO ONE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The Trilogy Valve with locator technology is the only TAVI system approved for aortic regurgitation (Photo courtesy of JenaValve)

New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation

Aortic regurgitation is a condition in which the aortic valve does not close properly, allowing blood to flow backward into the left ventricle. This results in decreased blood flow from the heart to the... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.