We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

By HospiMedica International staff writers
Posted on 28 Mar 2022
Print article
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar technology for a range of disorders, including Parkinson’s disease, Alzheimer’s disease and COVID-19. Now, for the first time, researchers have used voice analysis to predict CAD outcomes in patients who were tracked prospectively after an initial screening.

In a recent study by the research team at Mayo Clinic (Rochester, MN, USA), an artificial intelligence (AI)-based computer algorithm accurately predicted a person’s likelihood of suffering from CAD based on voice recordings alone. The researchers found that people with a high voice biomarker score were 2.6 times more likely to suffer major problems associated with CAD and three times more likely to show evidence of plaque buildup in medical tests compared with those who had a low score. While the technology is not yet ready for use in the clinic, the demonstration suggests voice analysis could be a powerful screening tool in identifying patients who may benefit from closer monitoring for CAD-related events. Researchers beleive this approach could be particularly useful in remote health care delivery and telehealth.

For the new study, researchers recruited 108 patients who were referred for a coronary angiogram, an X-ray imaging procedure used to assess the condition of the heart’s arteries. Participants were asked to record three 30-second voice samples using the Vocalis Health smartphone application. For the first sample, participants read from a prepared text. For the second sample, they were asked to speak freely about a positive experience, and for the third, they spoke freely about a negative experience.

The Vocalis Health algorithm then analyzed participants’ voice samples. The AI-based system had been trained to analyze more than 80 features of voice recordings, such as frequency, amplitude, pitch and cadence, based on a training set of over 10,000 voice samples. In previous studies, researchers had identified six features that were highly correlated with CAD. For the new study, researchers combined these features into a single score, expressed as a number between -1 and 1 for each individual. One-third of patients were categorized as having a high score and two-thirds had a low score.

Study participants were tracked for two years. Of those with a high voice biomarker score, 58.3% visited the hospital for chest pain or suffered acute coronary syndrome (a type of major heart problem that includes heart attacks), the study’s composite primary endpoint, compared with 30.6% of those with a low voice biomarker score. Participants with a high voice biomarker score were also more likely to have a positive stress test or be diagnosed with CAD during a subsequent angiogram (the composite secondary endpoint).

The researchers have not concluded why certain voice features seem to be indicative of CAD, but believe that the autonomic nervous system may play a role. This part of the nervous system regulates bodily functions that are not under conscious control, which includes both the voice box and many aspects of the cardiovascular system, such as heart rate and blood pressure. Therefore, it is possible that the voice could provide clues about how the autonomic nervous system is functioning, and by extension, provide insights into cardiovascular health, according to the researchers.

“We can’t hear these particular features ourselves. This technology is using machine learning to quantify something that isn’t easily quantifiable for us using our human brains and our human ears,” said Jaskanwal Deep Singh Sara, MD, a cardiology fellow at Mayo Clinic and the study’s lead author. “We’re not suggesting that voice analysis technology would replace doctors or replace existing methods of health care delivery, but we think there’s a huge opportunity for voice technology to act as an adjunct to existing strategies.”

Related Links:
Mayo Clinic 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
Blanket Warming Cabinet
EC250
New
Phlebotomy Cart
TR-65J38

Print article

Channels

Critical Care

view channel
Image: An in-situ curing strategy to develop a stretchable, semi-transparent, and durable GPE-TENG (Photo courtesy of Pandey et al. (2024), Chemical Engineering Journal; DOI: 10.1016/j.cej.2024.156650)

Gel-Based Stretchable Triboelectric Nanogenerators to Revolutionize Wearable Technology

Wearable technology, ranging from fitness trackers and smartwatches to medical sensors worn on the body, is revolutionizing our interaction with technology. As these devices gain in popularity, triboelectric... Read more

Surgical Techniques

view channel
Image: The first-ever surgery performed utilizing the MARS platform and Intuitive Da Vinci SP single-port robot (Photo courtesy of Levita Magnetics)

Revolutionary Robotic Surgery Combines Dual-System Technologies for Groundbreaking Prostate Procedure

In a pioneering advancement for robotic-assisted surgery, surgeons at UT Southwestern Medical Center (Dallas, TX, USA) have successfully performed the first-ever surgery utilizing two distinct systems... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.