We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Rapid and Inexpensive Paper-Based Test Simultaneously Quantifies Multiple Cardiac Biomarkers

By HospiMedica International staff writers
Posted on 02 May 2023
Print article
Image: Deep learning-enabled multiplexed POC sensor using paper-based fluorescence vertical flow assay (Photo courtesy of UCLA)
Image: Deep learning-enabled multiplexed POC sensor using paper-based fluorescence vertical flow assay (Photo courtesy of UCLA)

Centralized lab testing has long been the go-to method for diagnosing common illnesses. However, this approach often necessitates costly medical equipment and complex procedures that can only be carried out by highly trained professionals within a medical facility. These factors prolong testing time and hinder the widespread application of diagnostics in remote and resource-poor areas due to limited access to central labs. In response to these challenges, point-of-care (POC) sensors were developed as alternative diagnostic tools, characterized by their simplicity, rapid operation, compact size, and affordability. The most prevalent type of POC tests are paper-based sensors, also known as lateral flow assays (LFAs), where the injected sample fluid flows horizontally and reacts with specific test regions (test lines) to generate, for instance, a color change. Despite their ease of use and cost-effectiveness, existing LFAs have certain drawbacks, such as lower sensitivity and challenges with multiplexed testing for disease biomarkers.

To address these shortcomings, researchers at University of California (UCLA, Los Angeles, CA, USA) have devised a novel paper-based biosensor that utilizes a fluorescent multiplexed vertical flow assay to rapidly and simultaneously measure three cardiac biomarkers from human serum samples. This new paper-based POC sensor's vertical flow design allows for multiple test regions with up to 100 individual test spots on a single disposable cartridge. The powerful sensor operates with just a small serum droplet and can be easily used by a minimally trained individual in under 15 minutes per patient. Along with its multiplexing capabilities, the paper-based sensor also boasts high sensitivity, achieving a detection limit better than ~0.5 ng/mL for each biomarker — less than one billionth of half a gram per milliliter of serum.

Additionally, the UCLA researchers have created a mobile phone-based, low-cost handheld fluorescence reader and a deep learning-assisted signal analysis pipeline to automatically and accurately quantify the three target biomarkers in a user-friendly manner. The team tested their paper-based multiplexed sensor for the quantification of three biomarkers of acute coronary syndrome (ACS), including myoglobin, creatine kinase-MB (CK-MB), and heart-type fatty acid binding protein (FABP). ACS is a cardiovascular condition that demands prompt diagnosis in emergency situations, and these target markers are released into the bloodstream shortly after symptom onset. The newly-developed paper-based sensor was evaluated on human serum samples, and the measured concentrations for all three cardiac biomarkers aligned well with the benchmark measurements obtained by a standard laboratory test. Given its accuracy, speed, user-friendliness, and affordability, this deep learning-enabled paper-based multiplexed sensor offers an attractive POC testing option for various applications in remote and resource-limited settings.

“Compared to a commonly used linear calibration method, our deep learning-based analysis benefits from the function approximation power of neural networks to learn non-trivial relationships between the multiplexed fluorescence signals from the paper-based sensor and the underlying analyte concentrations in serum,” said Artem Goncharov, a graduate student at UCLA Electrical & Computer Engineering Department. “As a result, we have accurate quantitative measurements for all three biomarkers of interest despite the background noise present in clinical serum samples.”

Related Links:
UCLA 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Transducer Covers
Surgi Intraoperative Covers
New
Mobile Barrier
Tilted Mobile Leaded Barrier

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.