We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Novel Endotracheal Tube Coating Reduces Airway Inflammations

By HospiMedica International staff writers
Posted on 17 Aug 2021
Print article
Image: Electron microscopy images of coated and uncoated ET tubes (Photo courtesy of CHOP)
Image: Electron microscopy images of coated and uncoated ET tubes (Photo courtesy of CHOP)
A new study shows how a coating that releases antimicrobial peptides (AMPs) over a two-week period reduces upper-airway inflammation and subglottic stenosis (SGS) following intubation.

Developed at The Children's Hospital of Philadelphia (CHOP; PA, USA), the drug-eluting endotracheal (ET) coating consists of a water-in-oil emulsion of Lasioglossin-III (Lasio) in a base of poly(d,l-lactide-co-glycolide) (PLGA). Antibacterial activity was tested against Staphylococcus epidermidis, Streptococcus pneumoniae, and pooled human microbiome samples by placing ET tubes coated with Lasio/PLGA and appropriate controls in 48 well plates with diluted bacteria. Peptide release was quantified over two weeks via fluorometric peptide assays.

Biocompatibility was tested against laryngotracheal fibroblasts and lung epithelial cells, and bacterial inhibition and tube adhesion were tested by measuring optical density and colony formation after tube culture, respectively. The results revealed a prolonged, linear release over one week, the typical timeframe before the ET tube is changed. Significant antibacterial activity was evidenced during the study period, as well as prevention of bacterial adherence to the tube. No cytotoxicity to fibroblasts or lung epithelial cells was found. The study was published on July 28, 2021, in The Laryngoscope.

“We have created a novel device to modulate the upper-airway microbiome, which could be used to prevent bacterial infections during intubation and help prevent subglottic stenosis and other airway diseases,” said senior author Riccardo Gottardi, PhD, assistant professor of pediatrics and head of the bioengineering and biomaterials lab at CHOP. “Not only does this technology work predictably and continuously over the normal duration of chronically intubated patients, but it is also fast and easy to produce and could easily be modulated to target any bacteria of interest.”

AMPs, of which over 1,700 have been identified so fare, are potent, broad spectrum therapeutic agents that have been shown to kill both Gram positive and gram negative bacteria, enveloped viruses, fungi, and even some cancerous cells. Unlike antibiotic drugs, AMPs appears to destabilize biological membranes, form transmembrane channels, enhance immunity by altering host gene expression, induce chemokine production, promote wound healing, and modulate the responses of dendritic cells and cells of the adaptive immune response.

Related Links:
The Children's Hospital of Philadelphia

Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Transcatheter Heart Valve
SAPIEN 3 Ultra
New
MRI System
Ingenia Prodiva 1.5T CS

Print article

Channels

Critical Care

view channel
Image: Researchers have designed a magnetoplasmonic strain sensor for wearable devices (Photo courtesy of Chemical Engineering Journal, DOI: https://doi.org/10.1016/j.cej.2024.155297)

Power-Free Color-Changing Strain Sensor Enables Applications in Health Monitoring

Wearable devices and smart sensors are revolutionizing health and activity monitoring, enabling functions like heart rate tracking and body movement detection. However, conventional tools like stethoscopes... Read more

Surgical Techniques

view channel
Image: Self-aligning MagDI System magnets fused together (Photo courtesy of GT Metabolic Solutions)

Minimally Invasive Surgical Technique Creates Anastomosis Without Leaving Foreign Materials Behind

Creating a secure anastomosis that is free of complications such as bleeding or leaks is a key goal in minimally invasive bariatric, metabolic, and digestive surgery. Traditional anastomotic methods, such... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.