We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Personalized Robotic Platform Rehabilitates Disorganized Gait

By HospiMedica International staff writers
Posted on 06 Feb 2019
Print article
Image: The Optimal-G Pro personalized gait platform (Photo courtesy of Motorika).
Image: The Optimal-G Pro personalized gait platform (Photo courtesy of Motorika).
An advanced gait rehabilitation system uses enhanced learning intelligence technology (ELITE) to provide optimal neuromuscular re-education and brain retraining.

The Motorika (Mount Laurel, NJ, USA) Optimal-G Pro system integrates clinical principles of gait rehabilitation and motor learning with expertise in robotic technology to restore natural physiological gait patterns in both adults and pediatric patients following neurological trauma or orthopedic injury. The system provides real-time video biofeedback through front and side cameras that offer superior visualization in order to reinforce proper gait biomechanics. ELITE proactively adjusts the patient's treatment plan, based on objective clinical data and their individual progress.

Neuromuscular re-education and brain retraining are facilitated by intensive and repetitive reciprocal motion, recovering normal gait patterns and improves ambulatory capabilities, balance, stability, and posture. By continuously analyzing functional abilities, therapists can provide recommendations and correct adjustments based on treatment parameters, enabling improved decision-making, progressing therapy programs, and enhancing patient care.

The Optimal-G Pro system is designed to allow for natural gait kinematic movements of the hip, knee, and ankle during walking by helping to provide three-dimensional (3D) freedom of movement of the pelvis, including lateral shift, rotation and up/down vectors. Optimal weight bearing and pressure distribution are provided by shifting load from the robotic support to the patient’s lower limbs, using an ergonomically designed harness and foot-lifters. In addition, the system provides muscle resistance measurement, passive, active, and active-assist modes of therapy, 18 physiological gait profiles, interactive games, and virtual reality.

“Robot rehabilitation solutions enable therapists to enhance traditional treatments. For example, they can be easily used under the supervision of one therapist, providing intensive, task-oriented gait training, as part of a set of rehabilitation tools that additionally include other non-robotic approaches,” said Arik Avni, co-CEO of Motorika. “Thanks to ELITE, the Optimal-G Pro enables rehabilitation professionals, for the first time, to offer a proactive motor learning technology that personalizes patient therapy and ultimately accelerates recovery.”

Human gait is defined as bipedal, biphasic forward propulsion of the center of gravity of the human body, in which there are alternate sinuous movements of different segments of the body with least expenditure of energy. Different gait patterns are characterized by differences in limb-movement patterns, overall velocity, forces, kinetic and potential energy cycles, and changes in the contact with the surface.

Related Links:
Motorika

Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Catheters
Camino 1104B Series
New
Point-Of-Care Terminal
POC-824

Print article

Channels

Critical Care

view channel
Image: The patented methodology helps know a patient’s hemodynamics non-invasively, faster and more accurately (Photo courtesy of SeeMedX)

Innovative Cardiac Monitoring System to Transform Heart Failure Care

Healthcare providers managing heart failure patients often have limited treatment options, most of which are invasive, high-risk, and expensive. Now, a groundbreaking, non-invasive technology offers real-time... Read more

Surgical Techniques

view channel
Image: The implantable wireless sensors can read and transmit patients\' parameters via ultrasound (Photo courtesy of Microtech)

Microsensor Platform Turns Existing Implants into Smart Devices for Real Time Monitoring

A revolutionary technology allows for the integration of sensors into existing medical devices, enabling physicians to monitor patients' vital signs in real time and make treatment decisions based on measurable... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.