We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Wireless-Controlled Soft Neural Implant Stimulates Brain Cells

By HospiMedica International staff writers
Posted on 22 Aug 2019
Print article
Image: Lego-like replaceable drug cartridges and LEDs help target specific neurons of interest (Photo courtesy of KAIST).
Image: Lego-like replaceable drug cartridges and LEDs help target specific neurons of interest (Photo courtesy of KAIST).
A soft neural implant operated by a smartphone can deliver multiple drugs and colored light to control Parkinson's, Alzheimer's, addiction, depression, and pain, according to a new study.

Developed at the Korea Advanced Institute of Science and Technology (KAIST; Daejeon, Republic of Korea), the University of Washington (UW; Seattle, USA) and the University of Colorado (Boulder, USA), the neural implant includes a soft, ultrathin probe (the thickness of a human hair), which holds microfluidic channels and tiny LEDs, smaller than a grain of salt. The implant also holds 'plug-n-play' replaceable drug cartridges, which allows continuous neuropharmacology and photostimulation of the same brain circuits with unlimited drug doses and light delivery.

Activation of the wireless implantable optofluidic brain probe is controlled with a simple user interface on any smartphone, providing neuroscientists with the ability to easily trigger any specific combination or precise sequencing of LED light and drug delivery, without being physically inside the laboratory, and even set up fully automated delivery. For the study, the researchers demonstrated the use of the probes by controlling locomotor activity in mice for over four weeks. The study was published on August 5, 2019, in Nature Biomedical Engineering.

“This technology significantly overshadows the conventional methods used by neuroscientists, which usually involve rigid metal tubes and optical fibers to deliver drugs and light,” said lead author Raza Qazi, PhD, of KAIST and University of Colorado Boulder. “Apart from limiting the subject's movement due to bulky equipment, their relatively rigid structure causes lesions in soft brain tissue over time, therefore making them not suitable for long-term implantation. We are interested in further developing this technology to make a brain implant for clinical applications.”

“This technology will help researchers in many ways. It allows us to better dissect the neural circuit basis of behavior, and how specific neuromodulators in the brain tune behavior in various ways,” added senior study co-author professor of anesthesiology, pain medicine, and pharmacology Michael Bruchas, MD, PhD, of the UW School of Medicine. “We are also eager to use the device for complex pharmacological studies, which could help us develop new therapeutics for pain, addiction, and emotional disorders.”

Photostimulation is the use of light to artificially activate biological compounds, cells, tissues or even whole organisms. One form of photostimulation is optogenetics, which has shown significant promise in the treatment of a series of neurological disorders such as Parkinson’s disease and epilepsy by targeting specific cell types or neural circuits. So far, it has only been implemented for research purposes in the field of neurobiology, serving to reveal more about the mechanisms of specific disorders.

Related Links:
Korea Advanced Institute of Science and Technology
University of Washington
University of Colorado

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Blanket Warming Cabinet
EC250
New
Digital Radiographic System
OMNERA 300M

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.