We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

3D Bioprinting Rebuilds the Human Heart

By HospiMedica International staff writers
Posted on 13 Aug 2019
Print article
Image: A trileaflet heart valve 3D printed using FRESH (Photo courtesy of CMU).
Image: A trileaflet heart valve 3D printed using FRESH (Photo courtesy of CMU).
A new study describes a collagen scaffold tissue engineering technique that brings us one step closer to being able to three-dimensionally (3D) print a full-sized, adult human heart.

Developed by researchers at Carnegie Mellon University (CMU; Pittsburgh, PA, USA), the technique, called freeform reversible embedding of suspended hydrogels (FRESH), allows collagen to be deposited layer-by-layer within a the hydrogel support bath, giving it a chance to solidify in place before it is removed. Controlling the pH-driven gelation provides a 20-micrometer filament resolution porous microstructure that enables rapid cellular infiltration and micro-vascularization, allowing the fabrication and perfusion of multiscale vasculature and tri-leaflet valves.

The FRESH support gel is easily melted away by heating it from room temperature to body temperature after printing is completed, without damaging the 3D printed collagen structure or the cells. The 3D-bioprinted collagen scaffold can be used to engineer components of the human heart at various scales, from capillaries to a full organ, with high fidelity and function. For the study, cardiac ventricles printed using human cardiomyocytes demonstrated synchronized contractions, directional action potential propagation, and wall thickening up to 14% during peak systole. The study was published on August 2, 2019, in Science.

“Collagen is an extremely desirable biomaterial to 3D print with because it makes up literally every single tissue in your body. What makes it so hard to 3D print, however, is that it starts out as a fluid; so if you try to print this in air it just forms a puddle on your build platform,” said co-lead author PhD student Andrew Hudson, MSc. “We've developed a technique that prevents it from deforming. What we're talking about is the convergence of technologies in the areas of stem cell science, machine learning, and computer simulation, as well as new 3D bioprinting hardware and software.”

Collagen is an ideal material for biofabrication due to its critical role in the extracellular matrix (ECM), where it provides mechanical strength, enables structural organization of cell and tissue compartments, and serves as a depot for cell adhesion and signaling molecules. However, it is difficult to 3D-bioprint complex scaffolds using collagen in its native unmodified form because gelation is typically achieved using thermally driven self-assembly, which is difficult to control.

Related Links:
Carnegie Mellon University

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Medical-Grade POC Terminal
POC-821

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.