We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

3D-Printed Scaffolds Reconstruct Craniofacial Defects

By HospiMedica International staff writers
Posted on 03 Apr 2018
Print article
Image: Dr. Venu Varanasi and Research Assistant Tugba Cebe set the coordinates for the 3D printer (Photo courtesy of TAMU).
Image: Dr. Venu Varanasi and Research Assistant Tugba Cebe set the coordinates for the 3D printer (Photo courtesy of TAMU).
In-situ three-dimensional (3D) printing of osteogenic (bone regenerating) scaffolds can be used for the proper and rapid healing of bone fractures, claims a new study.

Developed by researchers at Texas A&M University (TAMU; College Station, TX, USA), the University of Texas (Arlington, USA), and other institutions, the substrate ink for the biosilica-biopolymer scaffold was prepared by mixing Laponite (Lp) with methacrylated gelatin (MAG); sucrose was used to increase viscosity and reduce gelation of the printing ink. During additive printing, crosslinking was initiated by ultra-violet (UV) light at the tip of the printer nozzle and, and the scaffolds were 3D printed in-situ, directly into calvaria bone defects using varied Laponite concentration so as to determine optimal bone density and chemical structure.

The scaffolds were fabricated into a mesh design, with dimensions matching that of formed defects; after four weeks, cranial bone samples were extracted. Evaluation by micro-CT showed that nearly 55% of the bone defect was healed for higher Lp- rich-MAG scaffolds, whereas empty control defects only had 11% of the defect filled with bone after four weeks. Histological staining showed that the scaffolds recruited osteoblasts and blood and growth factors into their structure to regenerate the intra-bony layers needed to initiate the healing process. The study was presented at the International & American Associations for Dental Research annual meeting, held during March 2018 in Fort Lauderdale (FL, USA).

“The results showed that 3D in-situ printing of bone regenerating scaffolds did improve the delivery of regenerative and reconstructive biomedical devices for the proper and rapid healing of bone fractures,” said senior author and study presenter Venu Varanasi, PhD, of TAMU. “This provides an advantage in that cells from within the initial hematoma become incorporated into the scaffold structure, thus, giving the operator flexibility to use the printed scaffold as a structural support that stimulates healing.”

“The gold standard for reconstruction of craniofacial defects involves carving of the cranial bone, hip bone, or the leg bone to recreate the missing structures. This is technically impossible for large facial defects,” said maxillofacial surgeon Likith Reddy, DDS, MD, director of residency training at the TAMU School of Dentistry. “If the technology works as anticipated, it will revolutionize the reconstruction of such complex three-dimensional structures. Reconstruction of such complex facial bony defects would become less of an art and more of a science.”

Severe traumatic injuries to the cranium have been challenging to heal due to the large missing bone volume. Typically, metal or plastic implants are used. But, these implants can take a long time to be customized for fit and often take a longer than desired time to support bone fixation. This can often lead to multiple revision surgeries if the defect is not properly healed. Moreover, the tissue that adjoins the implant can improperly heal.

Related Links:
Texas A&M University
University of Texas
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool
New
Fetal and Maternal Monitor
F9 Series

Print article

Channels

Surgical Techniques

view channel
Image: Catheter electrodes could be successfully delivered and guided into ventricular spaces and brain surface for electrical stimulation (Photo courtesy of Rice University)

Novel Neural Interface to Help Diagnose and Treat Neurological Disorders with Minimal Surgical Risks

Traditional methods of interfacing with the nervous system typically involve creating an opening in the skull to access the brain. Researchers have now introduced an innovative technique called endocisternal... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.