We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New RF Module Facilitates Implantable Medical Device Design

By HospiMedica International staff writers
Posted on 13 Mar 2018
A new radio frequency (RF) base station module has been developed specifically for external controllers and monitors of implantable medical devices.

The Microsemi (Aliso Viejo, CA, USA) ZL70123 base station module, combined with the ZL70323 implant module, is designed to provide a complete solution for achieving superior performance in next-generation medical networks (Med-Net). More...
Both modules are based on the latest generation of Microsemi's ultralow power (ULP) radio transceiver chip, which uses the medical implant communication service (MICS) 402-405 MHz RF band. The ZL70123 supports multiple ULP wake-up options, including the 2.45 GHz industrial, scientific, and medical (ISM) band.

The new ZL70123 base station module includes all RF-related functions required to deploy external device functions in a MICS-band RF telemetry system, including an integrated matching network with a nominal 50 ohm RF port; a bandpass filter for suppression of unwanted blockers; a 2.45 GHz wake-up transmitter with a nominal 50 ohm RF port; and a fully shielded, 18×12×3 mm package. Microsemi also offers an application development kit (ADK) for future expansion.

The matching Microsemi ZL70323 implant module consumes less than six milliamps (mA) of power when transmitting or receiving data, and consumes just 10 nanoamperes (nA) when in its sleep state. An integrated antenna tuning circuit allows the module to be used with a wide range of implant antennas (as nominal antenna impedance load is 100+j150 ohms). Additional features include surface acoustic wave filters for suppression of unwanted blockers and antenna tuning; an integrated 24 MHz reference frequency crystal; and decoupling capacitors.

“The ZL70123 base station module raises the bar in implant telemetry by offering more flexibility, longer range capability, and smaller size than its predecessor, while maintaining backward compatibility with older systems,” said Jeff Kuhn, application manager for Microsemi. “Combining the ZL70123 base station module with the ZL70323 implant module, Microsemi's Med-Net radio solution enables deeper implants with strong communication links while preserving battery power.”

“RF engineering is a highly specialized discipline, and leveraging Microsemi's deep expertise in this area allows our customers to reduce design times and minimize project risk,” said Martin McHugh, product line manager for implant modules at Microsemi. “With Microsemi's two-module radio link, companies can now focus research dollars and development efforts on new therapies that enable a better quality of life.”

Related Links:
Microsemi


Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Portable Digital Floor Scale
DR400C
New
Thoracolumbar & Sacropelvic System
Ennovate TLSP
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.