We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Data-Driven Approach Predicts Daily CDI Risk

By HospiMedica International staff writers
Posted on 05 Mar 2018
A novel machine-learning algorithm can estimate a patient's daily risk of developing Clostridium difficile infection (CDI) from electronic health record (EHR) data.

Researchers at Massachusetts General Hospital (MGH; Boston, USA), the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA), and other institutions conducted a study that utilized EHR data from 115,958 adult admitted to MGH and the University of Michigan Health System (UM; Ann Arbor, MI, USA), in order to develop a generalizable machine learning algorithm that can identify hospital-specific risk-stratification models.

To do so, the researchers extracted patient demographics, admission details, patient history, and daily hospitalization details. More...
They then developed a machine learning process to help predict a patient's risk of developing CDI by repeatedly analyzing the data. The machine learning process extracted features that could point to constellations of symptoms, circumstances, and details of medical history most likely to result in CDI at any point in the hospital stay. The algorithm identified a total of 2,964 and 4,739 features in the MGH and UM models, respectively.

The MGH and UM models identified different sets of features that could predict the relative importance of risk factors, which varied significantly across hospitals. In particular, in-hospital locations appeared in the set of top risk factors at one hospital, and in the set of protective factors at the other. On average, both models were able to predict CDI five days in advance of clinical diagnosis, using risk stratification models tailored to an institution’s EHR system and patient population. The study was presented at the annual IDWeek meeting, held during October 2017, in San Diego (CA, USA).

“The records contained over 4,000 distinct variables. We have data pertaining to everything from lab results to what bed they are in, to who is in the bed next to them and whether they are infected. We included all medications, labs and diagnoses. And we extracted this on a daily basis,” said senior author Jenna Wiens, PhD, of the University of Michigan. “You can imagine, as the patient moves around the hospital, risk evolves over time, and we wanted to capture that.”

CDI is a serious illness resulting from infection of the internal lining of the colon by C. difficile bacteria, and typically develops after the use of broad-spectrum antibiotics that disrupt normal bowel flora, allowing the bacteria to flourish. The risk of CDI is particularly high in patients aged 65 years and older, and disease recurrence occurs in up to 25% of patients within 30 days of initial treatment. It is the leading cause of nosocomial diarrhea in industrialized countries.

Related Links:
Massachusetts General Hospital
Massachusetts Institute of Technology
University of Michigan Health System

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Infusion System
SIGMA Spectrum
New
Pressure Transducer
TruWave
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The Minder Implant can record brain activity continuously for very long periods (Photo courtesy of Epiminder)

Implantable Device Continuously Monitors Brain Activity in Epileptic Patients

Epilepsy is one of the most prevalent and serious chronic neurological disorders, impacting around 52 million people globally. It is characterized by recurrent seizures, which are caused by abnormal electrical... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.