We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Stretchy Circuits Foretell Future of Wearable Electronics

By HospiMedica International staff writers
Posted on 29 Jun 2016
A new wave of wearable integrated circuits could drive the Internet of Things (IoT) and a much more connected, high-speed wireless world.

Developed by researchers at the University of Wisconsin (WISC; Madison, USA) and the University of Electronic Science and Technology (UESTC; Chengdu, China), the powerful, stretchable, highly efficient integrated epidermal electronic circuits could allow health care staff in an intensive care unit (ICU) to monitor patients remotely and wirelessly. More...
What makes the stretchable integrated circuits powerful is their unique structure, which contains, essentially, two ultra-tiny intertwining power transmission lines in repeating S-curves.

The serpentine shape, formed in two layers with segmented metal blocks, like a three dimensional (3D) puzzle, gives the transmission lines the ability to stretch without affecting their performance. It also helps shield the lines from outside interference while confining the electromagnetic waves flowing through them, resulting in an almost complete elimination of current loss. The advance could allow health care staff to monitor patients remotely and wirelessly, increasing patient comfort by decreasing the customary tangle of cables and wires.

Unlike other stretchable transmission lines, whose widths can approach 640 micrometers (0.64 millimeters), the new stretchable integrated circuits are just 25 micrometers (0.025 millimeters) thick, and can operate at radio frequency levels up to 40 gigahertz, a microwave frequency range that falls directly in the 5G range, which is slated to accommodate a growing number of cellphone users that can provide notable increases in data speeds. The study was published on May 27, 2016, in Advanced Functional Materials.

“This is a platform; this opens the door to lots of new capabilities. We’ve found a way to integrate high-frequency active transistors into a useful circuit that can be wireless,” said senior author Professor Zhenqiang “Jack” Ma, PhD, the University of Wisconsin. “These concepts form the basic elements used in the design of stretchable microwave components, circuits, and subsystems performing important radio frequency functionalities, which can apply to many types of stretchable bioelectronics for radio transmitters and receivers.”

Related Links:
University of Wisconsin
University of Electronic Science and Technology

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Infusion System
SIGMA Spectrum
New
Dual Chamber Warming Cabinet
D-Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.