We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Wikipedia Page Views Could Predict Disease Outbreaks

By HospiMedica International staff writers
Posted on 24 Nov 2014
A new study suggests that Wikipedia access data could be an effective tool for forecasting disease outbreaks up to a month in advance. More...


Researchers at the Los Alamos National Laboratory (NM, USA) reviewed access logs to disease-related Wikipedia pages between 2010 and 2013. They mapped the languages the information was written in, using this as an approximate measure for people's locations. Using linear statistical techniques models, the researchers then tested 14 location-disease combinations to demonstrate the feasibility of the techniques built upon the data stream, and compared the results with disease outbreak information provided by national health surveillance teams.

The researchers found three broad classes of results. In eight cases, there was a usefully close match between the model's estimate and the official data. This statistical technique allowed them to predict emerging influenza outbreaks in the United States, Poland, Japan, and Thailand, dengue fever spikes in Brazil and Thailand, and a rise in tuberculosis cases in Thailand.

In three cases, the model failed, apparently because patterns in the official data were too subtle to capture, and in a further three, the model failed apparently because the signal-to-noise ratio (SNR) in the Wikipedia data was too subtle to capture. The researchers suggested that disease incidence may also be changing too slowly to be evident in the chosen analysis period. The results also suggest that these models can be used even in places with no official data upon which to build models. The study was published on November 13, 2014, in PLoS Computational Biology.

“A global disease-forecasting system will change the way we respond to epidemics. In the same way we check the weather each morning, individuals and public health officials can monitor disease incidence and plan for the future based on today's forecast,” said lead author Sara Del Valle. “The goal of this research is to build an operational disease monitoring and forecasting system with open data and open source code. This paper shows we can achieve that goal.”

The researchers added that it is important to recognize demographic biases inherent in Wikipedia and other social internet data sources such as age, gender, and education. Most importantly, the data strongly over-represent people and places with good internet access and technology skills.

Related Links:

Los Alamos National Laboratory



Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Medical Cart
Medical Carts
New
12-Lead Electrocardiograph
ASPEL ECG GREY v.07.325
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The Minder Implant can record brain activity continuously for very long periods (Photo courtesy of Epiminder)

Implantable Device Continuously Monitors Brain Activity in Epileptic Patients

Epilepsy is one of the most prevalent and serious chronic neurological disorders, impacting around 52 million people globally. It is characterized by recurrent seizures, which are caused by abnormal electrical... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.