We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Functional Microrobots Could Harbor Bioengineering Apps

By HospiMedica International staff writers
Posted on 22 May 2017
A new study suggests that untethered micron-scale mobile robots can navigate and non-invasively perform specific tasks inside hard-to-reach body sites.

Currently being designed, fabricated, and tested at the Max Planck Institute for Intelligent Systems and Carnegie Mellon University, the first-generation microrobots will be able to deliver therapeutics and other cargo to targeted body sites, as well as to enclosed organ-on-a-chip microfluidic devices with live cells. More...
A new two-step approach is use to provide the microrobotic devices with desirable functions. The first step uses three-dimensional (3D) laser lithography to crosslink light-responsive polymers.

In the second step, the formed chemically homogenous base structure is functionalized by modifying it at specific geometric sites with chemically compatible small molecules which introduce new chemical groups using selective 3D laser lithography illumination; this causes an unreacted polymer precursor to be removed, and a new precursor with the desired chemical functionality is introduced in its place. The technique allows the microrobots to be fabricated with high versatility.

To prove the concept, the researchers prepared a bullet-shaped micro-swimmer, in which an inner cavity was selectively modified with catalytic platinum nanoparticles. The researchers also designed a microflower structure bearing orthogonal biotin, thiol, and alkyne groups at precisely defined positions. According to the researchers, the new sub-millimeter constructs hold a myriad of applications in various fields besides microrobots, including targeted delivery, tissue engineering, self-organizing systems, programmable matter, and soft microactuators. The study was published on May 8, 2017, in Lab Chip.

“Our key objective is to develop new methods of making miniaturized materials that are performing intelligently in complex and unstable environment,” said lead author postdoctoral researcher Hakan Ceylan, PhD, of the Max Planck Institute. “In the near future, probably in around 10 years, this could have tremendous applications in tissue engineering and regenerative medicine, while in the longer term, it could revolutionize the treatment of genetic diseases by single cell-level protein or nucleic acid delivery.”


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Thoracolumbar & Sacropelvic System
Ennovate TLSP
New
Sling
GoComfort
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.