We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Functional Microrobots Could Harbor Bioengineering Apps

By HospiMedica International staff writers
Posted on 22 May 2017
Print article
Image: A bullet-shape microrobot with a programmed inner cavity, swimming in 5% H2O2 (Photo courtesy of Max Planck Institute).
Image: A bullet-shape microrobot with a programmed inner cavity, swimming in 5% H2O2 (Photo courtesy of Max Planck Institute).
A new study suggests that untethered micron-scale mobile robots can navigate and non-invasively perform specific tasks inside hard-to-reach body sites.

Currently being designed, fabricated, and tested at the Max Planck Institute for Intelligent Systems and Carnegie Mellon University, the first-generation microrobots will be able to deliver therapeutics and other cargo to targeted body sites, as well as to enclosed organ-on-a-chip microfluidic devices with live cells. A new two-step approach is use to provide the microrobotic devices with desirable functions. The first step uses three-dimensional (3D) laser lithography to crosslink light-responsive polymers.

In the second step, the formed chemically homogenous base structure is functionalized by modifying it at specific geometric sites with chemically compatible small molecules which introduce new chemical groups using selective 3D laser lithography illumination; this causes an unreacted polymer precursor to be removed, and a new precursor with the desired chemical functionality is introduced in its place. The technique allows the microrobots to be fabricated with high versatility.

To prove the concept, the researchers prepared a bullet-shaped micro-swimmer, in which an inner cavity was selectively modified with catalytic platinum nanoparticles. The researchers also designed a microflower structure bearing orthogonal biotin, thiol, and alkyne groups at precisely defined positions. According to the researchers, the new sub-millimeter constructs hold a myriad of applications in various fields besides microrobots, including targeted delivery, tissue engineering, self-organizing systems, programmable matter, and soft microactuators. The study was published on May 8, 2017, in Lab Chip.

“Our key objective is to develop new methods of making miniaturized materials that are performing intelligently in complex and unstable environment,” said lead author postdoctoral researcher Hakan Ceylan, PhD, of the Max Planck Institute. “In the near future, probably in around 10 years, this could have tremendous applications in tissue engineering and regenerative medicine, while in the longer term, it could revolutionize the treatment of genetic diseases by single cell-level protein or nucleic acid delivery.”

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Adjustable Shower Trolley
ST 370
New
Carotid Artery Stent
Roadsaver

Print article

Channels

Critical Care

view channel
Image: The fiber photoacoustic spectrometer enables continuous intravascular gas monitoring (Photo courtesy of Jun Ma/Jinan University)

Miniaturized Fiber Photoacoustic Spectrometer Enables Real-Time Intravascular Blood Gas Monitoring

Miniaturized spectroscopy systems capable of detecting trace concentrations at the parts-per-billion (ppb) level are crucial for various applications, including biomedical diagnostics. However, traditional... Read more

Surgical Techniques

view channel
Image: The iReach Omnia with 90° articulation (Photo courtesy of Genesis Medtech)

World's First 90° Articulation Powered Stapler Revolutionizes Surgical Precision

Colorectal cancer ranks among the top three cancers globally, impacting millions of individuals annually. While surgical resection remains the primary treatment for low rectal cancer, surgeons encounter... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.