We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Air-Powered Computer to Help Prevent Blood Clots and Strokes

By HospiMedica International staff writers
Posted on 15 Aug 2024
Print article
Image: Closeup of the pneumatic logic sensing device (Photo courtesy of William Grover/UCR)
Image: Closeup of the pneumatic logic sensing device (Photo courtesy of William Grover/UCR)

Intermittent pneumatic compression (IPC) devices are leg sleeves that inflate with air at regular intervals to compress the legs, thereby enhancing blood flow and preventing clots which can lead to blocked blood vessels, strokes, or even death. Traditionally, these devices are powered and monitored by electronic systems, and while sensors can be integrated to detect malfunctions, this incorporation can increase the cost, complexity, and potential safety issues of the setup. Now, scientists have built an innovative air-powered computer that can trigger alarms when IPC devices malfunction, offering a more dependable and cost-effective solution for clot and stroke prevention without the need for electronic sensors.

Described in a paper in the journal Device, the computer developed by scientists at University of California, Riverside (Riverside, CA, USA) operates entirely on air and uses air pressure to signal alerts. It immediately blows a whistle when it detects any operational issues within the life-saving compression machine it monitors, signaling that the machine requires maintenance. Given that IPC devices themselves function pneumatically—using air moved through various compartments—the researchers opted to control one pneumatic system with another, enhancing safety through this integration. This mechanism works similarly to electronic circuits, calculating parity bits to process data.

In tests, the researchers demonstrated the functionality of the air-powered computer by intentionally damaging an IPC device with a knife, making it non-functional. Within seconds, the whistle sounded an alert. Compact in design, about the size of a matchbox, this device eliminates the need for multiple sensors and an electronic computer, thereby reducing costs and complexity. It also has potential for use in environments with high humidity or temperatures, which are typically challenging for electronic devices. Air-powered computing is a concept that is over a century old, with IPC device monitoring being just one of its many potential applications.

“IPC devices can save lives, but all the electronics in them make them expensive. So, we wanted to develop a pneumatic device that gets rid of some of the electronics, to make these devices cheaper and safer,” said William Grover, associate professor of bioengineering at UC Riverside and corresponding paper author.

Related Links:
UC Riverside

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Shaver System
DCA 470
New
Reusable Powered Coverlet
Skin IQ 365

Print article

Channels

Surgical Techniques

view channel
Image: Turn-by-turn guidance from Caresyntax provides real-time intraoperative support for the clinical team (Photo courtesy of Caresyntax)

AI-Powered Precision Surgery Platform to Make Procedures Smarter and Safer

The lack of seamless integration in medical technologies often results in inefficiencies, including unnecessary delays in surgery, increased potential for errors, and higher costs as equipment quickly... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.