We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Air-Powered Computer to Help Prevent Blood Clots and Strokes

By HospiMedica International staff writers
Posted on 15 Aug 2024

Intermittent pneumatic compression (IPC) devices are leg sleeves that inflate with air at regular intervals to compress the legs, thereby enhancing blood flow and preventing clots which can lead to blocked blood vessels, strokes, or even death. More...

Traditionally, these devices are powered and monitored by electronic systems, and while sensors can be integrated to detect malfunctions, this incorporation can increase the cost, complexity, and potential safety issues of the setup. Now, scientists have built an innovative air-powered computer that can trigger alarms when IPC devices malfunction, offering a more dependable and cost-effective solution for clot and stroke prevention without the need for electronic sensors.

Described in a paper in the journal Device, the computer developed by scientists at University of California, Riverside (Riverside, CA, USA) operates entirely on air and uses air pressure to signal alerts. It immediately blows a whistle when it detects any operational issues within the life-saving compression machine it monitors, signaling that the machine requires maintenance. Given that IPC devices themselves function pneumatically—using air moved through various compartments—the researchers opted to control one pneumatic system with another, enhancing safety through this integration. This mechanism works similarly to electronic circuits, calculating parity bits to process data.

In tests, the researchers demonstrated the functionality of the air-powered computer by intentionally damaging an IPC device with a knife, making it non-functional. Within seconds, the whistle sounded an alert. Compact in design, about the size of a matchbox, this device eliminates the need for multiple sensors and an electronic computer, thereby reducing costs and complexity. It also has potential for use in environments with high humidity or temperatures, which are typically challenging for electronic devices. Air-powered computing is a concept that is over a century old, with IPC device monitoring being just one of its many potential applications.

“IPC devices can save lives, but all the electronics in them make them expensive. So, we wanted to develop a pneumatic device that gets rid of some of the electronics, to make these devices cheaper and safer,” said William Grover, associate professor of bioengineering at UC Riverside and corresponding paper author.

Related Links:
UC Riverside


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Cervical Seal
Omni Lok
New
Infusion System
SIGMA Spectrum
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.