We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Technique Treats Aggressive Brain Tumors by Disrupting Blood-Brain Barrier

By HospiMedica International staff writers
Posted on 18 Jul 2024
Print article
Image: A visualization of the blood-brain barrier disruption one hour post-treatment as noted by the diffusion of normally impermeant (Photo courtesy of APL Bioengineering)
Image: A visualization of the blood-brain barrier disruption one hour post-treatment as noted by the diffusion of normally impermeant (Photo courtesy of APL Bioengineering)

Glioblastoma, the most common malignant brain tumor, accounts for more than half of all such cancers. Despite the use of aggressive treatments like surgery, chemotherapy, and radiotherapy, the prognosis for patients remains poor. A significant obstacle is the blood-brain barrier (BBB), which protects the brain from potential toxins in the bloodstream but also prevents many therapeutic agents from reaching brain tumors. This barrier highlights the urgent need for innovative treatments that can effectively target brain tumors like glioblastoma. Now, groundbreaking new research is exploring a new option that could one day be used to target glioblastoma and help add another tool to the cancer-fighting arsenal.

A team from Georgia Tech (Atlanta, GA, USA) and Virginia Tech (Blacksburg, VA, USA) previously conducted research on high frequency irreversible electroporation, or H-FIRE. H-FIRE utilizes non-thermal electrical pulses to destroy cancer cells and has been shown to disrupt the blood-brain barrier to enhance drug delivery. However, the study published in a paper in APL Bioengineering in May was the first to use a sinusoidal wave known as burst sine wave electroporation (B-SWE) to disrupt the blood-brain barrier. In a study using a rodent model to compare the impact of the sinusoidal wave against the more conventional, square-shaped wave, the researchers found that B-SWE resulted in less damage to cells and tissue but more disruption of the blood-brain barrier.

In certain clinical cases, both ablation and blood-brain barrier disruption would be ideal, but in other situations, blood-brain barrier disruption could be more important than destroying cells. For instance, in scenarios where a surgeon has removed the bulk of a tumor, B-SWE could potentially break down the blood-brain barrier around the surgical site, allowing chemotherapy agents to target any remaining cancer cells with minimal damage to the brain. The study also uncovered a drawback: the sinusoidal wave caused increased neuromuscular contractions, potentially harming the surrounding tissues. However, adjustments to the dosage of B-SWE showed it was possible to reduce these contractions while maintaining effective blood-brain barrier disruption. Future research aims to apply B-SWE to animal models with brain cancer to further explore its efficacy compared to the established H-FIRE technique in a clinical setting.

Related Links:
Georgia Tech
Virginia Tech

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Ambulatory Blood Pressure Monitor
ABPM70
New
6 Drawer X-Tall Emergency Cart
UXRLU-333669-RED

Print article

Channels

Surgical Techniques

view channel
Image: CADDIE cloud-based AI for colonoscopy supports doctors to detect and characterize polyps during colonoscopy procedures (Photo courtesy of Odin Vision)

Cloud-Based AI Endoscopy System Assists Gastroenterologists in Detecting Suspected Colorectal Polyps

Colorectal cancer is projected to cause over 53,000 deaths in the U.S. in 2024, ranking as the second leading cause of cancer-related deaths for both men and women. Alarmingly, the incidence in individuals... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.