We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Flexible Device Enables Sweat Gland Stimulation and Simultaneous Biosensing

By HospiMedica International staff writers
Posted on 29 May 2024

Human sweat is rich in biomarkers that can be used to monitor a range of health conditions, from diabetes to genetic disorders. More...

Many users prefer sweat sampling over blood collection because it is painless. However, one must engage in intense physical activity to produce enough sweat to extract sufficient nutrients or hormones from sweat for testing. This requirement is particularly challenging for those with limited mobility. Researchers have now developed a new type of sweat monitoring device that stimulates sweat production through drug delivery to the skin, eliminating the need for physical exertion.

The device was created through a collaboration between researchers at the Korea Institute of Science and Technology (KIST, Seoul, South Korea) and Northwestern University (Evanston, IL, USA). This innovative device applies a current to a drug-containing hydrogel, which then delivers the drugs directly to the sweat glands. The device is flexible, small, and soft, making it easy to attach to the skin. Sweat stimulated by the drug is channeled into microfluidic channels within the device and analyzed for biomarkers using integrated biosensors. This system facilitates the analysis of sweat biomarkers without the cumbersome need for hospital visits, reduces the risk of biomarker contamination during testing, and enhances the accuracy of the results. The device was tested on infants diagnosed with cystic fibrosis, measuring the chloride concentration in their sweat. The findings matched the accuracy of traditional sweat analysis methods used in hospitals, achieving over 98% accuracy.

Moreover, the stability of the device on the skin was verified by monitoring skin temperature and pH levels. Given that cystic fibrosis primarily manifests during infancy, continuous monitoring of disease progression and the infant's physical condition is crucial. This device enables easy monitoring at home, significantly reducing the psychological and physical burden on young patients and their caregivers. Beyond its immediate application, this device represents a significant advance in the field of non-invasive disease monitoring technology using sweat, applicable not only to infants but also to healthy adults. Additionally, the technology used for drug delivery through the skin could potentially enhance the effectiveness of localized drug treatments for skin conditions or wounds, thus speeding up the healing process.

"Through two years of collaborative research with Northwestern University, we have not only addressed the limitations of existing methods for inducing sweat but also achieved success in clinical research, bringing us one step closer to commercialization," said Dr. Kim Joohee from KIST.

Related Links:
KIST
Northwestern University


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Warming Cabinet
EC1850BL
New
Enteral Feeding Pump
Instilar 1420
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.