We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Innovative Material Paves Way for Next-Generation Wearable Devices

By HospiMedica International staff writers
Posted on 24 May 2024
Print article
Image: Pictured are stretchable wearable devices incorporated on the newly developed material substrate (Photo courtesy of Raudel Avila/Rice University and Sun Hong Kim/Hanyang University)
Image: Pictured are stretchable wearable devices incorporated on the newly developed material substrate (Photo courtesy of Raudel Avila/Rice University and Sun Hong Kim/Hanyang University)

Wireless modules that integrate telecommunications and power-harvesting capabilities, powered by radio-frequency (RF) electronics, are crucial for advancing skin-interfaced stretchable electronics. Despite their potential, these devices often face challenges under even minimal levels of strain which can alter critical electrical properties like antenna resonance frequency, leading to decreased signal strength or power-transfer efficiency. This issue is particularly significant when the devices are used on dynamic surfaces such as human skin. To address this, researchers have now developed a new material that not only maintains consistent signal strength but also mimics the movement of skin, opening the door to more reliable and advanced wearable devices that provide continuous wireless connectivity without the need for batteries.

The material was developed by an international team of researchers from Rice University (Houston, TX, USA) and Hanyang University (Seoul, South Korea) by embedding clusters of highly dielectric ceramic nanoparticles into an elastic polymer. This innovative material was reverse-engineered to mimic the elasticity and types of movement of human skin while enhancing its dielectric properties to counter the negative effects of motion on electronic interfaces, reduce energy loss, and dissipate heat effectively. The strategic placement and distribution pattern of the nanoparticles embedded in the substrate are crucial; the spacing and cluster shapes of these particles are designed to stabilize the electrical properties and maintain the resonant frequency of RF components essential for reliable performance.

Wearable technologies are revolutionizing healthcare by enabling innovative ways of monitoring, diagnosing, and managing health. The market for smart wear, especially in health and fitness, is rapidly expanding due to the transformative impact of these technologies. To explore the practical applications of this new material, the researchers constructed various stretchable wireless devices, such as antennas, coils, and transmission lines. They tested these devices on both the newly developed substrate and a standard elastomer lacking the ceramic nanoparticles. Their findings indicated that the wireless operational range of their far-field communication systems surpassed that of any other comparable skin-interfaced systems previously reported.

Additionally, this material shows great potential to enhance wireless connectivity across multiple wearable devices designed to conform to different body parts and sizes. For example, the team created wearable bionic bands for placement on the head, knee, arm, or wrist, which could monitor a wide array of health data, including EEG and EMG signals, knee movements, and body temperature. Specifically, a headband made from this material demonstrated exceptional stretchability—up to 30% for a toddler's head and 50% for an adult's—while still being able to transmit real-time EEG data over a wireless distance of 30 meters.

“Our team was able to combine simulations and experiments to understand how to design a material that can seamlessly deform like skin and change the way electrical charges distribute inside it when it is stretched so as to stabilize radio-frequency communication,” said Raudel Avila, assistant professor of mechanical engineering at Rice. “Skin-interfaced stretchable RF devices that can seamlessly conform to skin morphology and monitor key physiological signals require critical design of the individual material layouts and the electronic components to yield mechanical and electrical properties and performance that do not disrupt a user’s experience. As wearables continue to evolve and influence the way society interacts with technology, particularly in the context of medical technology, the design and development of highly efficient stretchable electronics become critical for stable wireless connectivity.”

Related Links:
Rice University
Hanyang University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
LED Examination Lamp
Clarity 50 LED
New
Anterior Cervical Plate System
XTEND

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.