We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

By HospiMedica International staff writers
Posted on 03 May 2024

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart rate to glucose levels to microbiome diversity. More...

Despite these advancements, there is still a significant gap in integrating these technologies seamlessly with the human body, especially when it comes to invasive monitoring devices. Now, a breakthrough in research on stretchable sensors could pave the way for developing soft, flexible microneedles, enhancing both comfort and accuracy in long-term health monitoring.

Developed by researchers at the University of Southern California (Los Angeles, CA, USA), this new technology involves stretchable three-dimensional penetrating microelectrode arrays. Traditional microneedle electrodes used for brain sensing, stimulation, and biomarker diagnosis are generally rigid, which limits their application. The new soft microneedle electrodes are specifically designed to be adaptable with muscle and skin tissues that often deform, ensuring continuous contact and minimizing tissue damage. This adaptability is crucial for accurate health monitoring, from assessing bladder function to detecting subtle changes in cardiac rhythms.

This advancement is made possible by a hybrid fabrication method that combines laser micromachining, microfabrication, and transfer printing. This method is both low-cost and scalable, offering unprecedented stretchability in microneedle electrodes—60-90%—the highest ever reported. It also allows for the customization of electrode geometry, recording sites, and the mechanical and electrical properties of the device. An interesting feature of the research is its deep-sea origins, with the technology used to record electrical activity in the moving muscles of a sea slug. This novel platform technology suggests the potential of these microneedle electrodes for broader biomedical applications, including brain and nerve activity monitoring, electrochemical skin sensing, neuromuscular disorder diagnosis, and deep tissue drug delivery.

Related Links:
University of Southern California


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Captivator EMR Device
Captivator Endoscopic Mucosal Resection Device
New
Dual-Screen Medical Display
C822W
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.