We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New Machine Learning Models Help Predict Heart Disease Risk in Women

By HospiMedica International staff writers
Posted on 25 Apr 2024

In the field of cardiac health, cardiovascular disease is notably underdiagnosed in women compared to men. More...

The commonly used Framingham Risk Score, which predicts the likelihood of developing cardiovascular disease within the next 10 years, is based on specific criteria including age, sex, cholesterol levels, and blood pressure. However, this does not account for anatomical differences between sexes; female hearts, for example, are typically smaller and have thinner walls. Consequently, using the same diagnostic standards for both sexes means that women's hearts need to increase disproportionally more than men’s to meet the same risk criteria. A team of researchers has now built more accurate cardiovascular risk models than the Framingham Risk Score using a large dataset and have also quantified the underdiagnosis of women compared to men.

Researchers at Stanford University (Stanford, CA, USA) quantified the underdiagnosis of women compared to men and found that the use of sex-neutral criteria results in significant underdiagnosis of female patients. To achieve more accurate predictions for both sexes, they incorporated four additional metrics absent in the Framingham Risk Score: cardiac magnetic resonance imaging, pulse wave analysis, EKGs, and carotid ultrasounds. Utilizing data from over 20,000 individuals in the UK Biobank—a comprehensive biomedical database of around half a million UK residents aged 40 and over—they applied machine learning techniques. They found that EKGs were particularly effective in enhancing cardiovascular disease detection in both sexes. Despite this, traditional risk factors remain valuable for assessing risk, according to the researchers.

This study marks the first step towards reevaluating risk factors for heart disease by incorporating advanced technologies to improve risk prediction. Nevertheless, the study faces limitations that future research should address. One such limitation is the binary treatment of sex in the UK Biobank, ignoring the complex nature of sex involving hormones, chromosomes, and physical traits that may not fit neatly into 'male' or 'female' categories. Moreover, the study's focus on middle-aged and older UK residents may limit the applicability of the findings to other demographic groups and geographical locations.

“We found that that sex-neutral criteria fail to diagnose women adequately. If sex-specific criteria were used, this underdiagnosis would be less severe,” said Skyler St. Pierre, a researcher at Stanford University's Living Matter Lab. “We also found the best exam to improve detection of cardiovascular disease in both men and women is the electrocardiogram (EKG).”

“While traditional clinical models are easy to use, we can now use machine learning to comb through thousands of other possible factors to find new, meaningful features that could significantly improve early detection of disease,” added St. Pierre.

Related Links:
Stanford University


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Leg Wraps
Leg Wraps
New
Captivator EMR Device
Captivator Endoscopic Mucosal Resection Device
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.