We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Bioelectronic Mesh Grows With Cardiac Tissues for Comprehensive Heart Monitoring

By HospiMedica International staff writers
Posted on 22 Mar 2024

Heart disease remains the top cause of death worldwide. More...

The ability to monitor heart tissue in real time is significantly limited. Implanting sensors in the heart is risky, and the heart's complexity—its mechanical actions of pumping blood and the electrical signals controlling those actions—demands monitoring of more than one characteristic at a time. However, traditional sensors can only track one feature, and a device capable of measuring both would be too large, potentially affecting the heart's function. Until now, no single sensor could assess both the heart's mechanical and electrical activities without affecting its operation. Now, researchers have created a bioelectronic mesh embedded with graphene sensors that can record the electrical signals and movements of cardiac tissue at the same time.

The tissue-like bioelectronic mesh system developed by a team of engineers led by the University of Massachusetts Amherst (Amherst, MA, USA) is integrated with an array of atom-thin graphene sensors and can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue. This breakthrough allows for observation of the heart's development, providing insights into how its mechanical and electrical functions change over time. The device consists of two key components: a three-dimensional cardiac microtissue (CMT) derived from human stem cells that closely resembles a living human heart, and graphene, a one-atom-thick pure-carbon substance known for its electrical conductivity and piezoresistive properties. This means graphene can detect electrical activity and changes in resistance even when it is stretched, all without disrupting the heart's operations.

Embedded in a soft, stretchable, porous mesh scaffold that mimics human tissue, these graphene sensors can non-invasively attach to cardiac tissue, remaining stable and conductive over time. This allows for continuous monitoring of the CMT's development. This device is a significant advancement for cardiac disease research and the study of drug therapies' potential side effects. Going forward, the researchers aim to expand this technology for broader applications, including in vivo monitoring, to gather precise data to combat heart disease.

Related Links:
University of Massachusetts Amherst


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Pocket Fetal Doppler
CONTEC10C/CL
New
Needle Guide Disposable Kit
Verza
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.