We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Bioelectronic Mesh Grows With Cardiac Tissues for Comprehensive Heart Monitoring

By HospiMedica International staff writers
Posted on 22 Mar 2024
Print article
Image: The bioelectronic mesh can measure electrical signal and movement of cardiac tissue at the same time (Photo courtesy of UMass Amherst)
Image: The bioelectronic mesh can measure electrical signal and movement of cardiac tissue at the same time (Photo courtesy of UMass Amherst)

Heart disease remains the top cause of death worldwide. The ability to monitor heart tissue in real time is significantly limited. Implanting sensors in the heart is risky, and the heart's complexity—its mechanical actions of pumping blood and the electrical signals controlling those actions—demands monitoring of more than one characteristic at a time. However, traditional sensors can only track one feature, and a device capable of measuring both would be too large, potentially affecting the heart's function. Until now, no single sensor could assess both the heart's mechanical and electrical activities without affecting its operation. Now, researchers have created a bioelectronic mesh embedded with graphene sensors that can record the electrical signals and movements of cardiac tissue at the same time.

The tissue-like bioelectronic mesh system developed by a team of engineers led by the University of Massachusetts Amherst (Amherst, MA, USA) is integrated with an array of atom-thin graphene sensors and can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue. This breakthrough allows for observation of the heart's development, providing insights into how its mechanical and electrical functions change over time. The device consists of two key components: a three-dimensional cardiac microtissue (CMT) derived from human stem cells that closely resembles a living human heart, and graphene, a one-atom-thick pure-carbon substance known for its electrical conductivity and piezoresistive properties. This means graphene can detect electrical activity and changes in resistance even when it is stretched, all without disrupting the heart's operations.

Embedded in a soft, stretchable, porous mesh scaffold that mimics human tissue, these graphene sensors can non-invasively attach to cardiac tissue, remaining stable and conductive over time. This allows for continuous monitoring of the CMT's development. This device is a significant advancement for cardiac disease research and the study of drug therapies' potential side effects. Going forward, the researchers aim to expand this technology for broader applications, including in vivo monitoring, to gather precise data to combat heart disease.

Related Links:
University of Massachusetts Amherst

Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Phototherapy Eye Protector
EyeMax2
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool

Print article

Channels

Surgical Techniques

view channel
Image: The new treatment combination for subdural hematoma reduces the risk of recurrence (Photo courtesy of Neurosurgery 85(6):801-807, December 2019)

Novel Combination of Surgery and Embolization for Subdural Hematoma Reduces Risk of Recurrence

Subdural hematomas, which occur when bleeding happens between the brain and its protective membrane due to trauma, are common in older adults. By 2030, chronic subdural hematomas are expected to become... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.