We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Novel Left Ventricular Assist Device Could Provide Alternative Treatment Option to Cardiac Transplantation

By HospiMedica International staff writers
Posted on 12 Mar 2024

In the United States, heart failure affects nearly seven million people, with about 400,000 deaths annually related to the condition. More...

It often leads to reduced mobility, diminished quality of life, and inability to work, thus presenting a substantial public health care challenge. Heart failure is a deteriorating disease, and no effective treatment exists for its end stage. While cardiac transplantation remains the sole option for many, the scarcity of donor hearts is a significant limitation. Left ventricular assist device (LVAD) heart pumps offer a vital alternative, aiding patients with end-stage heart failure in maintaining blood circulation. LVAD implantation, however, is not without its complications. These include infection, blood clotting (thrombosis), stroke, and bleeding, largely attributed to blood damage by the implanted devices. These issues often necessitate invasive surgeries. Another major concern with current LVADs is the percutaneous drivelines used for powering the device. These drivelines, penetrating the skin, can lead to infections, rehospitalizations, and further surgeries. Additionally, they limit patient mobility, adversely affecting their quality of life.

Now, a multi-institutional research project led by the Georgia Institute of Technology (Georgia Tech, Atlanta, GA, USA) aims to develop an innovative LVAD as a treatment alternative to cardiac transplantation and as long-term support in end-stage heart failure. This project aims to rectify the shortcomings of existing LVADs, thereby making the therapy more efficient and less invasive. The proposed device enhancements aim to reduce blood damage, blood clot formation, and complications from drivelines, such as infection and mobility restrictions. The research team combines interdisciplinary expertise, encompassing advanced engineering designs, antithrombotic slippery hydrophilic (SLIC) coatings, wireless power transfer systems, and magnetically levitated driving mechanisms, along with extensive preclinical testing. Upon completion, following clinical trials and regulatory approvals, this new LVAD could offer a significantly less invasive long-term support option for heart failure patients. This SLIC LVAD holds promise not only for civilian use but also for benefiting military personnel and veterans. Additionally, many of the groundbreaking technologies developed, like wireless power transfer for medical devices and antithrombotic coatings, have potential applications beyond this specific project.

Related Links:
Georgia Tech


Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Intelligent Mattress System
DualPlus
New
Critical Care Cart
Avalo
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.