We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Technology Boosts ECG Capabilities for Early Heart Disease Diagnosis

By HospiMedica International staff writers
Posted on 29 Feb 2024

Cardiovascular diseases often remain undetected until a critical event like a heart attack or stroke occurs. More...

Early identification is key to improving outcomes, but the absence of clear symptoms complicates this process. Advances in artificial intelligence (AI) technology are now enhancing the capabilities of the electrocardiogram (ECG), a century-old diagnostic tool, potentially enabling earlier detection and monitoring of heart diseases. Researchers at Mayo Clinic (Rochester, MN, USA) have pioneered the development of ECG-AI algorithms. These algorithms are currently used in research settings to assess the likelihood of various heart conditions, such as atrial fibrillation, amyloidosis, aortic stenosis, low ejection fraction, and hypertrophic cardiomyopathy (HCM). They also use AI to estimate a patient's biological age from both traditional 12-lead ECGs and single-lead ECGs obtained from smartwatches and other portable devices.

The ECG-AI is particularly effective in detecting low ejection fraction, a condition where the heart weakens and pumps less blood. Often, the symptoms of this condition are overlooked or attributed to other causes, like pregnancy, leading to a late diagnosis. ECG-AI can also identify peripartum cardiomyopathy, a type of heart muscle weakness that occurs during or after pregnancy. Similarly, it can help in the early detection of amyloidosis, a rare disease characterized by the buildup of misfolded proteins in organs, which can lead to heart failure.

HCM, a common genetic heart disease, is another condition where ECG-AI proves beneficial. HCM often goes unnoticed as it may not be evident in basic tests like a traditional ECG. However, ECG-AI can identify HCM by detecting patterns that might be missed even by expert clinicians. The potential of ECG-AI to spot these subtle indications early can be crucial in improving patient outcomes and treatment strategies for various heart conditions.

Related Links:
Mayo Clinic


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Critical Care Cart
Avalo
New
Powered Surgical Stapler
ECHELON 3000 Stapler
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.