We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

AI Tool Accurately Predicts Kidney Injury Signs In Critically Ill Patients

By HospiMedica International staff writers
Posted on 16 Jan 2024
Print article
Image: The machine-learning model predicts oliguria in critically ill patients (Photo courtesy of 123RF)
Image: The machine-learning model predicts oliguria in critically ill patients (Photo courtesy of 123RF)

Acute kidney injury (AKI), characterized by a rapid increase in serum creatinine or a decrease in urine output, is a primary cause of complications and increased mortality among patients in the intensive care unit (ICU). Despite the importance of early detection and intervention in AKI, current monitoring methods like vital signs, blood tests, and urine analysis, fall short of offering effective solutions. Serum creatinine, a common diagnostic tool for AKI, is not always reliable for early detection. The rise of artificial intelligence (AI) has led to numerous machine-learning models that have shown high accuracy in predicting outcomes for ICU patients, including AKI detection. However, the use of machine learning to predict oliguria, a critical component of AKI that is associated with higher mortality, has not been extensively researched.

Researchers at Chiba University Graduate School of Medicine (Chiba, Japan) have developed a machine-learning model that could predict the onset of oliguria in ICU patients. They developed the model and assessed its accuracy using data from a large, single-center surgical/medical mixed ICU. The model was based on 28 clinically relevant variables, including urine output, SOFA score, serum creatinine, pO2, FDP, IL-6, and peripheral temperature. It showed a high Area Under the Curve (AUC) of over 0.90 for predicting oliguria between 6 to 72 hours. This high accuracy was attributed to the large dataset of over 10,000 patients, providing extensive training data. The model’s high accuracy and capability to predict oliguria over longer periods with the AUC remaining unchanged even after reducing the variables in the model development indicate its robustness.

In addition, the method of predicting the onset of oliguria from an arbitrary time could have improved the accuracy by increasing the number of training datasets. The model was built based on 28 clinically relevant variables although the overlap of the top-listed variables in the model with those in a dataset of 1,018 values supports the viability of the chosen variables for prediction. Given that oliguria can identify AKI earlier than serum creatinine and is linked to poor outcomes in critically ill patients, this machine-learning model could be instrumental in early AKI detection. This early detection could lead to better patient management and timely interventions, potentially improving the prognosis for this patient group.

Related Links:
Chiba University Graduate School of Medicine

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Electric Cast Saw
CC4 System
New
Hospital Data Analytics Software
OR Companion

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.