We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Innovative Catheter Design Prevents Bacterial Infections

By HospiMedica International staff writers
Posted on 08 Jan 2024
Print article
Image: A diagram of the new catheter design (Photo courtesy of Caltech)
Image: A diagram of the new catheter design (Photo courtesy of Caltech)

Bacteria have developed efficient swimming abilities, which can pose significant health risks, particularly in medical settings where catheters are commonly used. These thin tubes, meant to remove fluids from the body, can unfortunately serve as pathways for bacteria to enter and cause urinary tract infections, leading to substantial healthcare costs worldwide. In response, researchers have developed a novel catheter tube that significantly hampers the ability of bacteria to move upstream, effectively reducing the potential for infections without relying on antibiotics or other chemical treatments. This new design, optimized through advanced artificial intelligence (AI), has shown a remarkable 100-fold reduction in the number of bacteria swimming upstream in laboratory experiments.

Fluid inside catheter tubes exhibits what's known as Poiseuille flow, where the fluid moves faster in the center and slows near the walls. Bacteria exploit this by using a unique motion, moving forward along the walls and then back in the middle, to progress through the tube. Researchers at California Institute of Technology (Caltech, Pasadena, CA, USA) decided to tackle this problem with simple geometries by designing tubes with triangular protrusions, similar to shark fins, lining the tube’s walls. Simulated models demonstrated that these structures effectively redirect bacteria towards the center of the tube where the faster flow sweeps them back downstream. Additionally, the triangles' fin-like curvature creates vortices that disrupt the bacteria's progress. The researchers then set out to verify the design experimentally with the help of additional biology expertise. The team was supported by their previous research into the navigation mechanisms of the nematode Caenorhabditis elegans, a rice grain–sized soil organism commonly studied in research labs, providing them with the tools needed to observe and analyze the movements of microscopic organisms. They utilized 3D printing to create these specially designed catheter tubes and employed high-speed cameras to track bacterial movements. The results were significant, showing a two-order magnitude decrease in the ability of bacteria to swim upstream.

Further simulations were conducted to identify the most effective shape for the triangular obstacles. The team created microfluidic channels, mimicking common catheter tubes, with these optimized triangular designs. Observations of E. coli bacteria moving through these channels closely matched their simulations. To enhance the design further, the team employed advanced AI techniques known as neural operators, drastically reducing the computation time from days to minutes. This AI-optimized model suggested slight modifications to the triangle shapes, boosting their efficacy by an additional 5% in preventing bacteria from swimming upstream. This groundbreaking design represents a significant stride in medical technology, offering a safer and more efficient way to prevent catheter-associated urinary tract infections without the need for antibiotics, marking a significant advancement in patient care and infection control.

"Our journey from theory to simulation, experiment, and, finally, to real-time monitoring within these microfluidic landscapes is a compelling demonstration of how theoretical concepts can be brought to life, offering tangible solutions to real-world challenges," said Tingtao Edmond Zhou, postdoctoral scholar in chemical engineering and a co-first author of the study.

Related Links:
Caltech

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
In-Bed Scale
IBFL500
New
Vertebral Body Replacement System
Hydrolift

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.