We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Tissue-Integrated Sensitive Glucose Nanosenor to Revolutionize Diabetes Management

By HospiMedica International staff writers
Posted on 03 Jan 2024
Print article
Image: The tissue-integrated sensitive glucose nanosenor uses inactive glucose oxidase enzyme for continuous glucose monitoring (Photo courtesy of 123RF)
Image: The tissue-integrated sensitive glucose nanosenor uses inactive glucose oxidase enzyme for continuous glucose monitoring (Photo courtesy of 123RF)

The key task of monitoring blood glucose levels is typically accomplished through the use of enzyme glucose oxidase (GOx)-based electrochemical sensors. Despite their effectiveness, these sensors produce the toxic byproduct hydrogen peroxide and also require cumbersome electrical components and batteries, complicating the development of continuous, implantable monitoring devices. An alternative approach involves single-wall carbon nanotubes (SWCNTs), which, when excited by light, emit near-infrared fluorescence that penetrates tissue and can be captured by non-invasive bioimaging techniques. However, integrating GOx with SWCNTs to create nanosensors is challenging as the typical method for attaching molecules to SWCNTs, sonication, deactivates the GOx molecules.

To address these challenges, scientists at the University of California, Berkeley (Berkeley, CA, USA) have innovated a battery-free fluorescent nanosensor that combines SWCNTs with an inactive form of GOx. This groundbreaking design allows for the continuous, reversible, and non-invasive bioimaging of glucose levels in body fluids and tissues. This development overturns the prevailing belief that GOx-based sensors require active GOx for effective glucose sensing. Through sonication, the team produced GOx-loaded SWCNT sensors capable of accurately and selectively detecting glucose in various mediums like serum, plasma, and even within mouse brain tissue.

According to the researchers, inactive GOx enzyme can still bind to glucose without converting it, and binding alone proved sufficient to modulate the fluorescence signal. In order to be completely independent of GOx activity, the researchers also created a GOx enzyme that even lacked the reactive group for glucose conversion. The resulting apo-GOx-SWCNT sensor was able to detect glucose in body fluids and mouse brain slices as reliably as the original conjugate of SWCNT and natural GOx. The researchers suggest that the use of inactive GOx molecules offers key advantages. For instance, it is possible to simplify the manufacturing process of the GOx-SWCNT nanosensors by utilizing sonication as an effective preparation step. Additionally, since the analyte is not consumed by the enzyme reaction, there are no toxic byproducts produced, and the measurements are intrinsically reversible, enabling the non-invasive continuous monitoring of glucose in tissue fluids.

Related Links:
University of California, Berkeley

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Hospital Bed
Alphalite
New
LED Surgical Light
Convelar 1670 LED+/1675 LED+/1677 LED+

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.