We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New Stretchy, Wearable Throat Sensor Processes and Predicts Health Data Faster

By HospiMedica International staff writers
Posted on 26 Dec 2023

Wearable medical sensors have revolutionized the ability to monitor health remotely and evaluate treatments. More...

However, interpreting the vast array of data points they gather, such as muscle activity, heart rate, respiratory rate, and speech or swallowing patterns, can be challenging for healthcare providers. To streamline this process, engineering researchers have developed an advanced machine learning platform designed to analyze and accurately predict information collected by wearable devices more efficiently. This technology has been incorporated into a new flexible, wearable throat sensor designed to capture vibrations and electrical muscle impulses in the neck area, thereby monitoring a user's speech and swallowing patterns.

The wearable patch developed at Penn State (University Park, PA, USA) features a composite hydrogel electrode interface. This design ensures the device remains secure and functional on the skin's surface, even during movement, while still providing high-quality signal capture. The hydrogel, an insoluble and flexible material, is convenient to apply and remove. The hydrogel sensor operates by collecting data on vibrations and muscle movements, which is then processed by a machine learning algorithm for detailed analysis. Once the data is analyzed, it's transmitted to a specialized cloud interface, accessible remotely by healthcare professionals.

This innovative algorithm is designed to adapt and learn, meaning that after just one minute of gathering a patient's throat movement data and undergoing three hours of offline training, it can predict patient data with an accuracy exceeding 90%. This capability allows healthcare professionals to make quicker, more informed diagnoses and anticipate the potential effectiveness of treatments.

“Soft, stretchy on-throat devices are needed in the health care market to continuously monitor the muscle and swallowing movements of patients with throat conditions to properly diagnose and treat them,” said principal investigator Huanyu “Larry” Cheng. “The patient data is collected by the patch at different frequencies, depending on the statistic type, such as swallowing, speaking or respiration. The algorithm groups the four frequencies into one streamlined output, which makes the data much more useful for health care providers to quickly look at and judge.”

Related Links:
Penn State


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Mobile X-Ray Machine
MARS 15 / 30
New
Anesthetic Gas Measurement Module
Scio Four
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.