We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Machine Learning Model Accurately Predicts Cardiac Arrest in ICU Patients Using ECG Data

By HospiMedica International staff writers
Posted on 28 Nov 2023

Cardiac arrest within hospital settings, particularly in Intensive Care Units (ICUs), remains a significant challenge, occurring in 0. More...

5–7.8% of patients upon hospital admission. Despite advancements in critical care, the unpredictable nature and diverse causes of these incidents make prevention difficult. Quick identification and immediate response are crucial for enhancing patient survival rates. Therefore, there's a pressing need for a system that can accurately and continuously predict in-hospital cardiac arrests, allowing for swift actions like early defibrillation and cardiopulmonary resuscitation (CPR).

To address this need, a team of researchers at Seoul National University Hospital (SNUH, Seoul, South Korea) has developed an innovative machine learning (ML) model. This model uniquely utilizes heart rate variability (HRV) measures from ICU patients to predict in-hospital cardiac arrests. Unlike traditional models that depend on comprehensive electronic medical records (EMR) data, this new approach simplifies prediction by relying solely on HRV measures, enabling real-time and continuous patient monitoring.

The study showcased the effectiveness of the light gradient boosting machine (LGBM) model, which excelled in early detection and rapid prediction of in-hospital cardiac arrests. This improvement in prediction accuracy could significantly enhance patient outcomes in clinical settings. The model's strengths include its exclusive use of ECG data for risk prediction, the integration of various HRV measures, and its transparency in explaining risk through these measures.

The exclusive use of ECG data makes this model particularly practical and adaptable to various healthcare environments, as continuous ECG monitoring is a routine procedure in ICUs. This approach contrasts with previous models that required multiple data types, including demographic information, vital signs, and laboratory results. The SNUH team's model, by focusing only on ECG data, presents a more straightforward, feasible solution for predicting cardiac arrests in critical care settings.

Related Links:
SNUH


Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Dual Chamber Warming Cabinet
D-Series
New
Portable Digital Floor Scale
DR400C
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.