We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New Robotic System Assesses Mobility After Stroke

By HospiMedica International staff writers
Posted on 23 Nov 2023

Worldwide, strokes affect over 15 million individuals annually, leaving three-quarters of survivors with arm and hand limitations, including weakness and paralysis. More...

Overcoming the tendency to underuse the affected arm, a phenomenon known as "arm nonuse" or "learned nonuse," is crucial for rehabilitation, but gauging arm usage outside clinical environments poses a significant challenge. Observing natural behavior often requires discreet monitoring methods. Addressing this need, researchers have now designed an innovative robotic system that collects accurate data on how stroke survivors spontaneously use their arms.

Developed by a team at USC Viterbi in Los Angeles, CA, USA, this cutting-edge approach employs a robotic arm to gather 3D spatial data about arm movements. The system utilizes machine learning algorithms to analyze this data, producing a reliable "arm nonuse" metric that can greatly assist clinicians in assessing rehabilitation progress. To make the experience engaging and supportive, a socially assistive robot (SAR) offers instructions and encouragement throughout the process. In their study, the USC Viterbi team worked with 14 participants who had been right-hand dominant prior to experiencing a stroke. The participants began by placing their hands on a 3D-printed box equipped with touch sensors, which served as the system's starting position. The SAR introduced the system's functionality and provided positive feedback. The robot arm would then move a button to various predetermined locations, initiating the "reaching trial" when the button lit up and the participant was cued to move.

The trial consisted of two phases: first, participants used their naturally preferred hand, mimicking typical daily activities. In the second phase, they were instructed to use their stroke-affected arm, akin to exercises performed in therapy or clinical settings. The team's machine learning analysis focused on three key metrics: the probability of arm use, the time taken to reach the target, and the successful completion of the reach. The study revealed significant differences in hand preference and time taken to reach targets among chronic stroke survivors. The method proved reliable over multiple sessions, with participants finding it easy to use and scoring it highly in terms of user experience.

Additionally, all participants deemed the interaction safe. The team received feedback suggesting that future enhancements could include personalized features, integrating additional behavioral data, and varying the tasks. This innovative approach not only demonstrated consistency and positive user experiences but also highlighted variations in arm use among participants. These insights are vital for healthcare professionals to more accurately monitor and facilitate stroke recovery.

“This work brings together quantitative user-performance data collected using a robot arm, while also motivating the user to provide a representative performance thanks to a socially assistive robot,” said Maja Matarić, study co-author and Chan Soon-Shiong Chair and Distinguished Professor of Computer Science, Neuroscience, and Pediatrics. “This novel combination can serve as a more accurate and more motivating process for stroke patient assessment.”

Related Links:
USC Viterbi 


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Medical Cart
Medical Carts
New
Needle Guide Disposable Kit
Verza
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.