We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Novel Liquid-Metal Material Paves Way for Super Flexible, Self-Healing Wearables

By HospiMedica International staff writers
Posted on 03 Oct 2023

Innovations in wearable tech often face challenges due to their electronic circuits, typically made of conductive metals that are either rigid or susceptible to damage. More...

Researchers have now invented a game-changing flexible, self-repairing, and highly conductive material that promises to enhance the capabilities of wearables, soft robotics, and smart gadgets.

Researchers from the National University of Singapore (NUS, Singapore) have engineered a unique material known as the Bilayer Liquid-Solid Conductor (BiLiSC). This material can stretch up to an astonishing 22 times its initial length while maintaining its electrical conductivity. This groundbreaking electrical-mechano property has never been achieved before and promises to increase the comfort and effectiveness of the human-device interface. This makes BiLiSC highly suitable for wearable technology, taking into account the body's shape and diverse movements.

BiLiSC is comprised of two different layers. The first layer is composed of a self-assembled liquid metal that retains high conductivity even when stretched, minimizing energy and signal loss during transmission. The second layer is a composite material containing liquid metal microparticles that allow it to self-repair after breakage. If the material breaks or cracks, the liquid metal from the microparticles flows into the gap, enabling nearly instantaneous self-healing and retention of high conductivity. For commercial feasibility, the NUS team has also found an efficient and scalable way to manufacture BiLiSC.

To showcase BiLiSC's potential, the NUS researchers created various electrical components for wearable electronics, such as pressure sensors, interconnections, wearable heaters, and wearable antennas for wireless communication. During lab tests, a robotic arm equipped with BiLiSC was more responsive to slight changes in pressure and maintained signal transmission even during bending and twisting movements, outperforming another arm with non-BiLiSC materials. The NUS team is now focusing on further material improvements and process enhancements. They aim to develop an advanced version of BiLiSC that can be printed directly without a template, cutting down on costs and increasing precision in fabricating.

“We developed this technology in response to the need for circuitry with robust performance, functionality and yet ‘unbreakable’ for next-generation wearable, robotic and smart devices,” said Professor Lim Chwee Teck, Director of the NUS Institute for Health Innovation & Technology and leader of the research team. “The liquid metal circuitry using BiLiSC allows these devices to withstand large deformation and even self-heal to ensure electronic and functional integrity.”

Related Links:
NUS


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Anesthesia Cart
UTGSU-333369-DKB
New
Tracheostomy Tube
Portex BLUselect
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.