We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Nanoscale Tattoos Adhered to Live Cells Could Enable Early Disease Diagnosis

By HospiMedica International staff writers
Posted on 10 Aug 2023
Print article
Image: gold nanodot array on a fibroblast cell (Photo courtesy of Johns Hopkins University)
Image: gold nanodot array on a fibroblast cell (Photo courtesy of Johns Hopkins University)

In a groundbreaking advancement, a team of engineers has created nanoscale tattoos—microscopic dots and wires capable of adhering to live cells—marking a significant step towards the ability to monitor the health of individual cells. For the first time ever, this novel technology offers the ability to place optical components and electronics onto live cells using tattoo-like arrays. These arrays possess the remarkable ability to adhere to cells while flexibly conforming to their fluid and moist external structure.

Researchers at Johns Hopkins University (Baltimore, MD, USA) built these "tattoos" in the form of arrays constructed from gold, a material renowned for its capacity to prevent signal loss or distortion in electronic wiring. These arrays were affixed to fibroblasts, cells responsible for generating and maintaining bodily tissue. To accomplish this, the arrays were treated with molecular adhesives and then delicately transferred onto the cells using an alginate hydrogel film—an adaptable gel-like laminate that can be dissolved after the gold adheres to the cell. The molecular adhesive on the array binds to the cells' extracellular matrix—a film secreted by the cells. Previous research had demonstrated how hydrogels could be used to adhere nanotechnology to human skin and internal animal organs. However, the current research distinguishes itself by showcasing the technique's application in attaching nanowires and nanodots to individual cells. This addresses the long-standing challenge of making optical sensors and electronics compatible with biological material at the single-cell level.

These "tattoos," akin to barcodes or QR codes, effectively bridge the gap between living cells or tissue and traditional sensors and electronic materials. The research team's achievement in arranging dots and wires into an array format is also vital. For this technology to be employed in tracking bioinformation, it is essential for researchers to arrange sensors and wiring in specific patterns, similar to how they are organized in electronic chips. The team's future goals include attaching more complex nanocircuits that can remain adhered for longer periods and experimenting with various cell types to expand the applications for this innovative technology.

"If you imagine where this is all going in the future, we would like to have sensors to remotely monitor and control the state of individual cells and the environment surrounding those cells in real time," said David Gracias, a professor of chemical and biomolecular engineering at Johns Hopkins University who led the development of the technology. "If we had technologies to track the health of isolated cells, we could maybe diagnose and treat diseases much earlier and not wait until the entire organ is damaged."

Related Links:
Johns Hopkins University 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer
New
Diagnostic Ultrasound System
MS1700C

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.