We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Breakthrough Brain Monitoring System Sets New Standard for ICU Sedation

By HospiMedica International staff writers
Posted on 05 Jun 2023
Print article
Image: The breakthrough sedation assessment system can reduce ICU costs and improve patient safety (Photo courtesy of BrainStem Biometrics)
Image: The breakthrough sedation assessment system can reduce ICU costs and improve patient safety (Photo courtesy of BrainStem Biometrics)

The Intensive Care Unit (ICU) hosts the most critically ill patients within a hospital environment. These patients are often faced with significant physical and psychological distress due to the severity of their conditions. To manage pain, anxiety, and facilitate treatment, healthcare providers frequently use sedation, which plays a critical role in enhancing patient outcomes in the ICU. However, currently, there are no validated tools to sufficiently measure sedation levels. Various patient agitation scales have been developed and occasionally used for evaluating sedation levels in ICU patients. But these scales, providing subjective data at a patient's bedside, fail to distinctly distinguish between different sedation levels. Now, a novel system offers objective monitoring of brain stem activity and its response to sedation therapy, assisting clinicians in determining the ideal sedation level for each patient.

BrainStem Biometrics’ (Palo Alto, CA, USA) has developed a simple, non-invasive, low-cost disposable sensor system that employs a sensor placed gently on the patient's closed eyelid. The sensor, equipped with a piezoelectric element, receives a signal representing eye tremor. This signal is then processed and converted into a frequency measurement. The signal processor incorporates filtering mechanisms to ensure clear transmission of the ocular microtremor (OMT) reading—a high-frequency, low-amplitude physiological eye tremor common to all individuals.

OMT is comparable to other neurogenic physical tremors. It originates in the brainstem and correlates directly with the level of neuronal activity in the brainstem and reticular activating system—responsible for awakening, awareness, arousal, and autonomic functions. Studies by clinicians demonstrate that OMT signal patterns and intensity change with varying brain states. OMT frequencies and amplitudes decline during death, coma, anesthesia, and sleep. Some patients with neurological conditions show unusual OMT signal patterns. Consequently, OMT offers substantial potential as a specific diagnostic and monitoring parameter applicable across various clinical settings—essentially serving as a new "brainstem vital sign."

The nature of illnesses within the ICU is quite diverse, and patients' requirements can differ significantly. For instance, a patient with head trauma needs different sedation management compared to a patient recuperating from surgery. Without objective measurement, achieving targeted sedation goals for patients becomes challenging. The consensus among critical care caregivers and administrators suggests a pressing need for a reliable tool to assess sedation levels in the ICU. The system developed by BrainStem Biometrics could address this need by enabling goal-directed sedative delivery, with the potential to optimally adjust sedation dosage for each patient.

Related Links:
BrainStem Biometrics

Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Phototherapy Eye Protector
EyeMax2
New
Mattress Replacement System
Carilex DualPlus

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.