We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Injectable Hydrogel Electrodes Could Prevent Ventricular Arrhythmias

By HospiMedica International staff writers
Posted on 09 May 2023
Print article
Injectable hydrogel electrodes could become a novel method for managing ventricular arrhythmias (Photo courtesy of Freepik)
Injectable hydrogel electrodes could become a novel method for managing ventricular arrhythmias (Photo courtesy of Freepik)

Ventricular arrhythmias are dangerous heart rhythm disorders that originate in the heart's lower chambers and can be caused by delayed conduction in scarred or diseased heart tissue, such as that resulting from a heart attack. Researchers are now developing conductive, injectable hydrogel electrodes to prevent and manage these arrhythmias and reduce the risk of sudden cardiac death.

An interdisciplinary research team from The Texas Heart Institute (Houston, TX, USA) and The University of Texas at Austin (Austin, TX, USA) is building on the initial proof-of-concept of pacing heart muscle using a hydrogel that solidifies within the body. They aim to create a combined material and delivery system that interfaces with existing pacemaker technology, enhancing its ability to treat ventricular arrhythmias. The researchers will closely collaborate to evaluate the injectable hydrogel's safety, functionality, and durability through benchtop testing and in a porcine model. They will also develop a transcutaneous catheter delivery system for the innovative hydrogel.

The team has already demonstrated the feasibility of pacing the heart using the hydrogel in a porcine model. By assessing its use in a myocardial infarction porcine model, they will investigate whether the hydrogel can restore conduction across scars, reducing ventricular arrhythmias and implantable cardioverter defibrillator shocks. If successful, this approach could effectively eliminate conduction delays in scarred heart tissue, which lead to lethal ventricular arrhythmias. A four-year, USD 2.37 million grant from the National Heart, Lung, and Blood Institute will support the researchers in conducting studies using a post-myocardial infarction model to demonstrate the hydrogel electrode pacing's potential to decrease the occurrence of ventricular arrhythmias and defibrillation shocks.

“We identified an unmet need to deliver electrical signals across these problematic scars in the heart, and unfortunately the leads that are currently available can only be threaded through larger vessels,” said electrophysiology medical device pioneer and clinician Dr. Mehdi Razavi, Director of Electrophysiology Clinical Research & Innovations at The Institute. “We envisioned using hydrogels injected into the small vessels that cross over scarred regions of the heart to propagate electrical currents and more effectively pace the heart.”

“Stimulating vast areas of the heart through planar wavefront propagation could introduce an entirely new cardiac resynchronization therapy, and ultimately alter the landscape of cardiac rhythm management through a new platform for painless ventricular defibrillation,” added Dr. Razavi.

 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Hospital Data Analytics Software
OR Companion
New
Electric Cast Saw
CC4 System

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.