We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Crocodile-Skin-Inspired Omnidirectionally Stretchable Pressure Sensor Could Find Diverse Healthcare Applications

By HospiMedica International staff writers
Posted on 23 Mar 2023
Print article
Image: Researchers have developed an electronic skin that is as flexible as crocodile skin (Photo courtesy of POSTECH)
Image: Researchers have developed an electronic skin that is as flexible as crocodile skin (Photo courtesy of POSTECH)

Creating electronic skin with multiple senses is crucial for numerous fields, such as healthcare, rehabilitation, prosthetic limbs, and robotics. A critical element of this technology is stretchable pressure sensors that can identify different types of touch and pressure. A team of researchers has now achieved a significant breakthrough by developing omnidirectionally stretchable pressure sensors modeled after crocodile skin.

Researchers at Pohang University of Science and Technology (POSTECH, Gyeongbuk. Korea) and the University of Ulsan (Ulsan, Korea) were inspired by the distinctive sensory organ present in crocodile skin and created pressure sensors with microdomes and wrinkled surfaces. This innovative approach resulted in the development of an omnidirectionally stretchable pressure sensor. Crocodiles, fearsome predators that spend most of their time submerged underwater, possess an exceptional ability to detect small waves and determine the direction of their prey. This ability is facilitated by an extremely complex and sensitive sensory organ located on their skin that comprises hemispheric sensory bumps arranged in a recurring pattern with wrinkled hinges in between. When the crocodile moves, the hinges deform, while the sensory part remains unaffected by mechanical deformations, allowing the predator to retain an extraordinary level of sensitivity to external stimuli when it is swimming or hunting underwater.

The research team successfully replicated the structure and function of the crocodile's sensory organ, resulting in a remarkably stretchable pressure sensor. To achieve this, they developed a hemispheric elastomeric polymer with intricate wrinkles, containing either long or short nanowires. This led to the development of a device that surpasses the performance of currently available pressure sensors. Other sensors lose their sensitivity when subjected to mechanical deformations, while the newly developed sensor retains its sensitivity even when stretched in one or two different directions. The delicate wrinkled structure on the sensor's surface enables it to maintain high pressure sensitivity, even when subjected to substantial deformation.

The sensor's wrinkled structure unfolds and reduces stress on the hemispheric sensing area that is responsible for detecting applied pressure when an external mechanical force is applied, allowing the sensor to maintain its pressure sensitivity even under deformations. This exceptional sensitivity to pressure allows the sensor to maintain its performance even when stretched up to 100% in one direction and 50% in two different directions. The new stretchable pressure sensor could be ideal for a wide range of wearable devices with diverse applications. The researchers tested the sensor’s performance by mounting it on a plastic crocodile and submerging it in water. Surprisingly, the mounted sensor managed to mimic the sensing capabilities of a crocodile's sensory organ and detect small water waves.

“This is a wearable pressure sensor that effectively detects pressure even when under tensile strain,” explained Professor Kilwon Cho who led the research team. “It could be used for diverse applications such as pressure sensors of prosthetics, electronic skin of soft robotics, VR, AR, and human-machine interfaces.”

Related Links:
POSTECH
University of Ulsan 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Diagnostic Ultrasound System
MS1700C
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.