We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Injectable Hydrogel Allows Scientists to Grow Electrodes inside Body

By HospiMedica International staff writers
Posted on 21 Mar 2023
Print article
Image: Using the injectable gel, the researchers were able to grow electrodes in living tissue (Photo courtesy of Linköping University)
Image: Using the injectable gel, the researchers were able to grow electrodes in living tissue (Photo courtesy of Linköping University)

Understanding complex biological functions, combating brain diseases, and developing interfaces between humans and machines all depend on linking electronics to biological tissue. Conventional bioelectronics, developed in parallel with the semiconductor industry, have a fixed and static design that is challenging, if not impossible, to combine with living biological signal systems. To address this issue, researchers have devised a method for creating soft and substrate-free electronically conductive materials in living tissue. Using a gel containing enzymes as "assembly molecules," researchers were able to grow electrodes in the tissue of zebrafish and medicinal leeches, bridging the gap between biology and technology.

In a groundbreaking study, researchers at Linköping University (Linköping, Sweden), Lund University (Lund, Sweden), and University of Gothenburg (Gothenburg, Sweden) have shown that electrodes can be triggered by the body's endogenous molecules without the need for genetic modification or external signals like light or electrical energy - a requirement in previous experiments. The researchers' achievement marks the first time that a successful formation of electrodes has been observed without resorting to such interventions. The study establishes a new paradigm in bioelectronics, where future injection of a viscous gel instead of implanted physical objects will suffice to stimulate electronic processes in the body.

The researchers' study also demonstrated that the method is capable of targeting the electronically conducting material to specific biological substructures to create appropriate interfaces for nerve stimulation. In the long run, fully integrated electronic circuits may be developed in living organisms using this method. The team from Lund University successfully created electrodes in the brain, heart, and tail fins of zebrafish and around the nervous tissue of medicinal leeches without causing harm to the animals during the injection of the gel that formed the electrodes. Their experiment was not without its challenges, however, and it took the researchers many years to figure out the ideal combination of substances and gel structure needed to form electrodes in these areas.

“Contact with the body’s substances changes the structure of the gel and makes it electrically conductive, which it isn’t before injection. Depending on the tissue, we can also adjust the composition of the gel to get the electrical process going,” said Xenofon Strakosas, researcher at LOE and Lund University and one of the study's main authors.

“Our results open up for completely new ways of thinking about biology and electronics. We still have a range of problems to solve, but this study is a good starting point for future research,” added Hanne Biesmans, PhD student at LOE and one of the main authors.

Related Links:
Linköping University
Lund University
University of Gothenburg 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Blanket Warming Cabinet
EC250
New
Plasma Freezer
iBF125-GX

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.