We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

First Ever Wearable Sensor Detects and Monitors Muscle Atrophy

By HospiMedica International staff writers
Posted on 20 Mar 2023
Print article
Image: A new device could allow for easier, less costly tracking of muscle atrophy (Photo courtesy of Pexels)
Image: A new device could allow for easier, less costly tracking of muscle atrophy (Photo courtesy of Pexels)

Muscle atrophy is a medical condition marked by the reduction of skeletal muscle mass and strength, which can occur due to several reasons like degenerative diseases, aging, and muscle disuse. Monitoring and assessing muscle size and volume using MRI scans can be expensive and time-consuming. Now, researchers have developed the first-ever wearable sensor that can detect and track muscle atrophy. The electromagnetic sensor, made using conductive "e-threads," offers an alternative to frequent MRI monitoring of muscle atrophy.

Researchers at The Ohio State University (Columbus, OH, USA) leveraged their previous work in creating health sensors for NASA for the first-ever approach to monitoring muscle atrophy using a wearable device. The health of astronauts is of paramount importance to NASA as prolonged stays in space typically lead to adverse effects on the human body. Researchers have been working tirelessly for years to comprehend and overcome these effects, and this study was motivated by the objective of finding the answers to potential health challenges faced by astronauts. Although scientists are aware that short spaceflights can cause up to a 20% loss in muscle mass and bone density of crew members, there is limited information on the effects of prolonged spaceflight on the human body.

Developing a wearable device that can accurately track even minute muscle changes in the human body is a challenging task. The researchers devised a device that operates by employing two coils - one that transmits and the other that receives - in concert with a conductor consisting of e-threads arranged in a unique zig-zag pattern throughout the fabric. Although the end product closely resembles a blood pressure cuff, the primary challenge was in creating an adjustable pattern that could accommodate diverse-sized limbs. After several trials, they discovered that a zig-zag pattern was ideal for maximizing flexibility, whereas sewing in a straight line constrained it. The same pattern innovation is why the sensor can be scaled up for use across multiple body parts or even various locations on the same limb.

In order to validate their research, the researchers developed 3D-printed molds of limbs and filled them with ground beef to mimic the calf tissue of an average-sized human subject. Their findings revealed that the sensor could accurately measure minute volumetric changes in the overall limb size and monitor up to 51% in muscle loss. Although the wearable device is still some years away from being used, the researchers have opined that the next significant move would be to link the device to a mobile app capable of documenting and providing health data directly to healthcare providers. The researchers aim to combine the sensor with other health monitoring devices, such as a tool for identifying bone loss, to subsequently improve life for future patients, both on Earth and in space.

“Ideally, our proposed sensor could be used by health care providers to more personally implement treatment plans for patients and to create less of a burden on the patient themselves,” said Allyanna Rice, lead author of the study and a graduate fellow in electrical and computer engineering at The Ohio State University. “Our sensor is something that an astronaut on a long mission or a patient at home could use to keep track of their health without the help of a medical professional. In the future, we would like to integrate more sensors and even more capabilities with our wearable.”

Related Links:
The Ohio State University 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Documentation System For Blood Banks
HettInfo II
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.