We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Stick-On Sensor Could Reduce Hospital Readmissions for Heart Failure Complications

By HospiMedica International staff writers
Posted on 10 Mar 2023

Heart failure occurs when the heart is unable to effectively pump blood throughout the body due to either weakness or stiffness. More...

This condition carries a high economic and healthcare burden due to frequent hospitalizations and premature deaths. Patients suffering from heart failure are typically instructed to monitor their weight and watch for symptoms such as swelling, fatigue, shortness of breath, and chest pain. Despite these efforts, many patients end up being readmitted to the hospital for heart failure complications, often caused by fluid accumulation in the lungs. Now, a study has found that the use of a stick-on sensor that alerts clinicians about lung fluid buildup can reduce the likelihood of heart failure patients being readmitted to the hospital by 38% within 90 days.

In an effort to reduce hospital readmissions, researchers at The Pennsylvania State University (University Park, PA, USA) conducted a study to assist patients and clinicians in detecting early signs of fluid buildup and intervening before hospitalization is necessary. By remotely providing clinicians with actionable information about a patient's condition, the device encourages clinicians to adjust medications earlier and prevent complications from worsening. The device, known as the µCor ("microcor") system, uses radiofrequency signals to measure the wearer's thoracic fluid index, which is an indicator of fluid in the lungs. It can be easily attached and removed using an adhesive patch on the left side of the chest, and transmits data to the patient's clinician. The µCor system may offer a less invasive and more cost-effective alternative to implantable sensors.

In this study, researchers included 522 individuals who had been hospitalized within the past 10 days due to heart failure. All participants were given a µCor monitor, which they continuously wore for 90 days. Half of the individuals were assigned to the control group, where the µCor monitor recorded data without transmitting it to their healthcare provider. The researchers utilized the recorded data from this group to establish a baseline threshold for determining elevated levels of thoracic fluid retention. The other half of participants were assigned to the intervention group, where their µCor monitor recorded data and transmitted it to their clinician, who was alerted if their thoracic fluid levels went beyond the established threshold. The results showed that individuals whose clinicians monitored their thoracic fluid using the µCor system were 38% less likely to experience hospitalization due to heart failure within 90 days (the primary endpoint of the study) when compared to those whose clinicians did not receive this information. Additionally, they were 38% less likely to experience a combined endpoint of heart failure-related emergency department visits, hospitalizations, or deaths.

When evidence of fluid buildup is present, common interventions include prescribing diuretics to reduce fluid retention and optimizing the dosages of other heart failure medications. However, since the µCor system is capable of detecting changes in the lungs before symptoms such as swelling become apparent, researchers believe that this device can prompt clinicians to take appropriate measures earlier, thereby preventing complications from worsening. Many devices can monitor for signs of heart failure complications, including implantable cardio-defibrillators (ICDs) and insertable loop recorders, which track abnormal heart rhythms that generally coexist with heart failure, and the shoulder-mounted ReDS system, which monitors for fluid in the lungs.

The µCor system provides a convenient and less invasive alternative to bulkier devices like ReDS or implantable devices. Moreover, clinicians may utilize µCor intermittently to monitor patients' thoracic fluid levels during high-risk periods, such as after a hospitalization. This can prevent overloading clinical staff with unnecessary data and instead enable them to provide more focused and effective support to the patients who stand to benefit the most from close monitoring. Besides its capability to measure thoracic fluid levels, researchers intend to study how the µCor device's additional collected data, such as heart and breathing rates, can complement the data provided to clinicians, thus creating a more complete picture of a patient's health status. Furthermore, researchers claim that the device might prove useful for monitoring patients with lung diseases, in addition to heart failure.

"It's very exciting to have a positive result within the remote monitoring field," said John P. Boehmer, MD, professor of medicine and surgery at The Pennsylvania State University in State College, Pennsylvania, and the study's lead author. "Having a wearable technology is particularly encouraging because it gives you the opportunity to monitor a patient during a high-risk interval and then stop monitoring when they exit that high-risk interval."

Related Links:
The Pennsylvania State University 


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Powered Surgical Stapler
ECHELON 3000 Stapler
New
Mattress System
Apollo Infant Dynamic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.