We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New Biodegradable Health Sensors Could Revolutionize Health Monitoring Technology

By HospiMedica International staff writers
Posted on 06 Mar 2023
Print article
Image: A seaweed second skin could transform health and fitness sensor tech (Photo courtesy of University of Sussex)
Image: A seaweed second skin could transform health and fitness sensor tech (Photo courtesy of University of Sussex)

The gathering of accurate patient information is the backbone of modern healthcare. Through continuous data collection and analysis, healthcare providers can develop a comprehensive understanding of their patients and consequently make better decisions. Wearable technology in healthcare refers to electronic devices that consumers can wear and use to track their personal health and fitness data. Now, the development of new biodegradable health sensors has the potential to revolutionize the way we experience personal healthcare and fitness monitoring technology.

Scientists at the University of Sussex (Brighton, UK) have developed new health sensors that can monitor heart rate and temperature by using natural elements like rock salt, water, seaweed, and graphene. The sensors are fully biodegradable due to their composition of solely natural ingredients, making them a more environmentally friendly alternative to commonly used rubber and plastic-based sensors. Their natural composition also places them in the emerging field of edible electronics- electronic devices safe for consumption. Importantly, the researchers have discovered that their eco-friendly seaweed-based sensors exhibit superior sensitivity compared to existing synthetic hydrogels and nanomaterials, commonly used in wearables for health monitoring. This improved sensitivity can provide higher accuracy in monitoring vital signs.

Seaweed is an effective insulator. However, by mixing a critical amount of graphene with seaweed, scientists managed to develop an electrically conductive film. Upon soaking the film in a salt bath, it quickly absorbs water, leading to the formation of a soft, spongy, and electrically conductive hydrogel. This breakthrough has the potential to revolutionize health monitoring technology, where future applications of clinical-grade wearable sensors can resemble second skin or temporary tattoos - they are lightweight, easy to apply, and safe since they are made with natural ingredients. As a result, this innovation could significantly improve the overall patient experience, circumventing the need for more commonly used invasive hospital instruments, wires, and leads.

“For me, one of the most exciting aspects to this development is that we have a sensor that is both fully biodegradable and highly effective,” said lead scientist Dr. Conor Boland, a physicist at the University of Sussex. “The mass production of unsustainable rubber and plastic based health technology could, ironically, pose a risk to human health through microplastics leeching into water sources as they degrade.”

Related Links:
University of Sussex

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
BiPAP Machine
Breath Smart Series
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits

Print article

Channels

Surgical Techniques

view channel
Image: Design and fabrication of biodegradable electrode for brain stimulation (Photo courtesy of Biomaterials, DOI:10.1016/j.biomaterials.2024.122957)

Biodegradable Electrodes Repair Damaged Brain Tissue Without Need for Surgical Removal

Neurological disorders often lead to irreversible cell loss and are a major cause of disability worldwide, with limited treatment options available. A promising therapeutic approach is the stimulation... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.