We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Game-Changing Technology Uses Live X-Ray Images for Guiding Endovascular Surgery

By HospiMedica International staff writers
Posted on 07 Jul 2022

Endovascular aneurysm repair (EVAR) is an alternative to open aortic surgery due to perceived advantages in patient survival, reduced post-operative complications and shorter hospital lengths of stay. More...

Despite these potential advantages, there is still significant variability in pre-operative planning and sizing, problems associated with imprecise visualization and device positioning intra-operatively, and inconsistent patient outcomes. Now, a game-changing technology for vascular navigation aids in planning and guiding endovascular surgery and is simple to integrate with the existing imaging hardware that is already present in the hospital.

Cydar Medical’s (Cambridge, UK) Cydar EV is the first product from Cydar’s Intelligent Maps system. The patented computer vision automatically overlays the Map on the live X-ray imaging with exceptional accuracy and robustness. When guidewires and instruments deform the blood vessels, real-time imaging is used to update the Map to match the new, deformed anatomy. The result is an accurate, responsive 3D Map on the screen throughout a procedure.

During endovascular surgery, stiff guidewires often straighten, shorten and displace blood vessels. The surgeon uses grab handles positioned along virtual guide wires to adjust the shape of the 3D Map to match the real-time anatomy (non-rigid transformation). And, once adjusted, the system remembers that adjustment in 3D even when the X-ray set moves position. Toggling between the pre-operative map and the adjusted map helps the clinical team visualize how the anatomy has changed and position devices precisely. This reduces procedure length by 30-60 minutes in endovascular interventions and radiation exposure for clinical staff and patients is radically reduced, by 50% even in standard EVAR.

Cydar, in partnership with King’s College London (London, UK), has now initiated the ARIA Study: a randomized controlled trial to assess the clinical, technical and cost-effectiveness of a cloud-based, ARtificially Intelligent image fusion system in comparison to standard treatment to guide endovascular aortic aneurysm repair (ARIA). The randomized trial will enroll 340 patients in 10 sites across the UK with a clinical diagnosis of abdominal aortic or thoracoabdominal aortic aneurysm (AAA and TAAA respectively) suitable for endovascular treatment. The trial will follow patients for one year and assess the effect of Cydar EV Maps on clinical-, technical- and cost-effectiveness in comparison to standard treatment in endovascular aortic aneurysm repair, used for both standard and complex devices.

“Our central hypothesis is that digital technology - specifically cloud-computing and artificial intelligence (AI), can be used to assess and learn from large volumes of data to inform clinical decision making and has the potential to improve the predictability of individual patient outcomes and the consistency of outcomes in the NHS,” said Dr Rachel Clough, Principal Investigator of the ARIA Study and Clinical Senior Lecturer from King’s College London.

“Cydar EV Maps is a game-changing technology for vascular navigation. The ARIA study provides a unique opportunity to demonstrate the benefits like reduced procedure time and reduction to radiation exposure, although some of the more subtle benefits related to procedural quality and reduced operator fatigue may never be directly measured but are obvious as an operator,” said Dr. Simon Neequaye, Principal Investigator at the Liverpool University Hospital NHS Foundation Trust.

Related Links:
Cydar Medical 
King’s College London


Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Leg Wraps
Leg Wraps
New
Dual Chamber Warming Cabinet
D-Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.