We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI-Based Algorithm Enables Quicker HF Diagnosis

By HospiMedica International staff writers
Posted on 01 Nov 2021
A novel deep learning (DL) computer algorithm can identify subtle electrocardiogram (ECG) shifts that predict heart failure (HF), according to a new study.

The DL algorithm, developed at the Icahn School of Medicine at Mount Sinai (MSSM; New York, NY, USA), is designed to quantify left ventricular (LV) and right- ventricular (RV) dysfunction from ECG data in order to assist diagnostic workflow. More...
To do so, a computer read 147,636 patient reports paired to 715,890 ECGs; the written reports acted as a standard set of clinical data so that the computer could compare them with identified patterns in the ECG images, helping the DL algorithm learn how to recognize heart pumping strengths via LV ejection fraction (LVEF).

The results showed the algorithm was 94% accurate at predicting which patients had a healthy LVEF and 87% accurate at predicting those who had an LV ejection fraction that was below 40%. The AI algorithm, however, was only 73% accurate at predicting HF in patients with an LVEF between 40% and 50%. The results also suggested that it was 84% accurate in detecting RV weaknesses, defined by more descriptive terms extracted from the ECG reports. The study was published on October 13, 2021, in JACC: Cardiovascular Imaging.

“We showed that deep-learning algorithms can recognize blood pumping problems on both sides of the heart from ECG waveform data. Ordinarily, diagnosing these type of heart conditions requires expensive and time-consuming procedures,” said senior author Benjamin Glicksberg, PhD, of the Hasso Plattner Institute for Digital Health at MSSM. “We are in the process of carefully designing prospective trials to test out its effectiveness in a more real-world setting. We hope that this algorithm will enable quicker diagnosis of heart failure.”

Clinicians currently rely on ECGs as a diagnostic tool, analyzing data points with the naked eye in order to identify patterns and abnormalities that are characteristic of heart disease. The problem is this takes time, and is entirely reliant on training and expertise. An experienced clinician can be reasonably reliable, but expertise levels vary significantly. Currently, AI tools to estimate cardiac function are restricted to quantification of very low LVEF values, when clinical HF is already evident.

Related Links:
Icahn School of Medicine at Mount Sinai


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Needle Guide Disposable Kit
Verza
New
Anesthetic Gas Measurement Module
Scio Four
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.