We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Magnetic Blood Filtering System Draws out Disease

By HospiMedica International staff writers
Posted on 03 Dec 2019
An innovative blood filtering system could draw out deadly infections such as malaria and sepsis from the body using magnets.

The MediSieve (London, United Kingdom) filtering technology works in a similar way to dialysis. More...
Blood is taken from a patient and infused with the MediSieve magnetic particles, which attach to specific targets so that they can be subsequently captured by a magnetic filter and removed from the blood before it is pumped back into the body. Particle size, magnetic properties, and number of binding agents coating the nanoparticles are all engineered to ensure maximal capture and removal by the filter. The whole process takes around two to four hours.

“In theory, you can go after almost anything. Poisons, pathogens, viruses, bacteria, anything that we can specifically bind to, we can remove. So, it’s a very powerful potential tool,” said George Frodsham, CEO and founder of MediSieve. “When someone has a tumor, you cut it out. Blood cancer is a tumor in the blood, so why not just take it out in the same way? Now we know it’s possible; it’s just a question of figuring out some of the details.”

Blood can be repeatedly passed through the system until the target is at such a low concentration that the immune system or a short course of medication can remove it. The first disease due to be tested for device efficacy is malaria; interestingly, in this case, the first step is not necessary, as malaria targets iron-rich blood cells and consumes hemoglobin, turning it magnetic. Further trials will be conducted to see whether the nanoparticles can remove sepsis-causing bacteria and tone down the deadly immune response.

“Malaria treatment is our flagship product because the infected cells have naturally occurring magnetic properties. The malaria parasite invades the red blood cell and consumes the hemoglobin, and therefore it leaves an iron-based waste product, which it then takes inside itself. So effectively malaria parasites poop is magnetic, and then it eats its poop,” explained Mr. Frodsham. “We really feel we can have a material human impact to help those suffering the most from the disease, particularly children and pregnant women.”

Related Links:
MediSieve


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Leg Wraps
Leg Wraps
New
Dual-Screen Medical Display
C822W
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.